Security Audit Report

Trustless Work seier

Delivered: November 7, 2025

runtime
verification

1/131

https://www.runtimeverification.com/
https://www.runtimeverification.com/

Table of Contents

¢ Disclaimer
o Executive Summary
e Goals
e Scope
e Methodology and Engagement Plan
¢ Platform Features and Logic Description
e Smart Escrow
¢ Smart Escrow Lifetime and Operations
¢ Multi-Release Version Extension
¢ Trustless Work's Backend
o Core Architecture Components
« Backend Service Architecture
¢ API Interface
o Data Management and Persistence
¢ Transaction Flow Management
+ Authentication and Security
o External Dependencies
¢ Client Integration

¢ |nvariants
¢ General
* Roles
¢ Status state changes
¢ Funds

e Findings
¢ [AO1] Dispute resolver and platform can call with arbitrary trustless_work_address and
redirect TW fees to another address
[A02] Maximum relative amount of fees not checked at initialization time
[A03] Initialization possible with pre-approved milestones
[AO4] Bypass of the Escrow Initialization Validations
[AO5] Front-running attack by a malicious platform on fund_escrow with

update_escrow

2/131

o [A06] Smart Escrow uses signed integer type i128 without sign checks
¢ [AQ7] The Approver Can Disapprove Milestones
[A08] Exceeding Assets Will Be Permanently Locked in The Multi-Release Smart Escrows
[A09] Milestones can both be released and dispute-resolved in the multi-release smart
escrows
¢ Informative Findings
¢ [BO1] Gas optimizations
e token_client.balance(&contract_address) called twice in core/dispute.rs:46

¢ Redundant out-of-bounds check of milestone index

« Empty milestones checks outside of Escrow initialization and update
e Unused admin

¢ Unnecessary use of the function clone

» Conditional at core/escrow.rs:17-21

e Remove signer usedin core/escrow.rs:102

e Disallow resolve_dispute with total_funds = ©

e Unnecessary checks in resolve_dispute

¢ lterative creation of Soroban vectors instead of patching in-place
» Unnecessary write to storage

¢ Unused enumerator iterator and vector length check in for loop

« [B02] Initialization possible with zero milestones
o [BO3] At initialization, the decimals attribute of Trustline is not validated
e [B0O4] validate_release_conditions returns wrong error when checking whether funds
were already released
e [BO5] validate_release_conditions does not check whether the Smart Escrow has
already been resolved
[BO6] dispute_resolver should consent to Smart Escrow prior to funding the escrow
[BO7] Smart Escrows Are Deployers Despite Having Constructors
[BO8] Disputed Funds Don't Go Back to Funders
¢ [B0O9] The Trustless Work Platform Does Not Handle Storage Archival
[B10] The Milestone Updates Phase Can Be Skipped
[B11] It Is Possible To Change The Platform Address Of A Smart Esrow
[B12] Differences Between the Single and Multi-Release Escrows

e Backend Findings

3/131

TS01] In-Memory Queue Storage Causing Data Loss and Scaling Issues
TS02] Open CORS Policy Allowing Unauthorized Cross-Origin Requests
TS03] Missing Authentication Guards on Critical Endpoints
TSO04] Authorization Bypass in Escrow Repository
TSO05] Information Disclosure Through Error Messages
TS06] HTTP Connections Allowed in Production Environment
TS07] Unsafe HTTP Methods for State-Changing Operations
TSO08] Type Safety Issues - From 'any' Types to DocumentData Casting
TSO09] Incorrect Validation Decorators for Numeric Fields
TS10] Client-Side Timestamps Creating Data Inconsistency
TS11] Missing Input Validation and Type Annotations
TS12] Unreliable Type Guard Functions and Interface Design Issues
TS13] Environment Configuration Management Issues
TS14] Code Quality and Documentation Issues
TS15] Data Architecture and Repository Pattern Issues
TS16] Development Tooling and Code Quality Setup
¢ Install ESLint and related packages
¢ Install Husky for git hooks
¢ Install Prettier and integration
¢ Install lint-staged for efficient pre-commit processing

—_—r— o~ —————— o~~~

[TS17] Backend allows for submitting any pre-signed transaction to the Stellar blockchain
[TS18] Singleton State Sharing in Transaction Builder

[TS19] Insecure private key storage in singleton service instance variables

[TS20] Inefficient database querying

[TS21] Notifications are created every hour once they start getting generated

[TS22] No natifications are being created for multi-release escrows

[TS23] Use of floating-point number type for critical values

[TS24] API key does not meet security standards

[TS25] Not using synced blockchain state in database

[TS26] API provided values are silently overridden with default values

[TS27] Login authentication procedure does not authenticate user

[TS28] The backend relies on data in pendingwWriteQueue and getTransaction instead
of events and blockchain storage

4/131

[TS29] Missing validation whether user-submitted transactions were actually submitted to
and processed by the blockchain
[TS30] Recommendation: use self-hosted Stellar nodes as the Stellar APl endpoint
[TS31] set-trustline endpoint uses a private key as an argument
[TS32] Issued JWT tokens never expire

¢ [TS33] Potentially never-ending loop querying the Stellar API
¢ Limitations and Recommendations for Follow-Up Audit

5/131

Disclaimer

This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided by you or is otherwise publicly
available, there are likely additional unknown risks that otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of this
system. This report is for informational purposes only and is provided on an "as-is" basis, and you
acknowledge and agree that you are making use of this report and the information contained herein
at your own risk. The preparers of this report make no representations or warranties of any kind,
either express or implied, regarding the information in or the use of this report and shall not be
liable to you or any third parties for any acts or omissions undertaken by you or any third parties
based on the information contained herein.

Smart contracts are still a nascent software arena, and their deployment and public offering carry
substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we recommend
seeking multiple independent opinions on any claims that impact a large quantity of funds.

6/131

Executive Summary

Trustless Work engaged Runtime Verification Inc. to perform a security audit of its smart contracts.
The audit was conducted between August 5 and September 12, 2025. The objective was to assess
the implementation's security and correctness, identify exploitable vulnerabilities, and provide
recommendations to enhance the system's reliability.

The Trustless Work project enables trustless payments via smart contracts, also referred to as
Smart Escrows, securing funds in escrow until clients approve milestones. Stablecoins like USDC
ensure stability and ease of use, but the protocol has no limitations regarding what tokens can be
used as the escrow's trustline.

The escrows work as vaults, storing assets and funds in a smart contract. The release of these
assets depends on the logic of the smart contracts themselves as well as the actions of users with
designated roles, representing authorities with specific responsibilities in the Trustless Work
protocol.

The audit process involved a comprehensive smart contract codebase review, focusing on manual
inspection and formal verification techniques. Runtime Verification utilized several techniques
related to formal specification generation, invariant analysis, and testing to test the system's
behavior under various conditions rigorously. This included the development and analysis of key
invariants to ensure the system's integrity across all state transitions.

In addition, the Trustless Work team provided a TypeScript backend codebase for review. This
component was not subject to a full audit; instead, Runtime Verification performed a three-week,
time-boxed design review focused on major architectural and security concerns. Within this limited
scope, we identified a significant number of issues, many of them recurring in pattern and
continuing to surface throughout the engagement. This suggests that additional vulnerabilities or
edge cases may exist beyond those captured in this report.

o Accordingly, we strongly recommend that the Trustless Work team:

¢ Address all recommendations from this report,

o Perform an additional internal security review focused on similar patterns and classes of
vulnerabilities, and

» Consider allocating further resources to an extended or follow-up audit of the backend.

It is important to note that while the smart contracts were fully audited, the backend review was
limited in scope and duration. As such, Runtime Verification cannot provide the same level of

7/131

https://www.trustlesswork.com/
https://runtimeverification.com/

assurance for the backend component as for the audited smart contracts.

During the course of the audit, a significant number of issues were identified and subsequently
addressed by the Trustless Work team. While many of these fixes appear to resolve the issues as
reported, several introduced substantial refactoring or architectural changes that could not be fully
reviewed within the audit timeframe. Runtime Verification performed targeted spot-checks of the
remediations, but did not conduct a full re-audit of all modified components. As a result, we
recommend that the updated codebase, including all remediations, undergo a comprehensive
follow-up audit before the protocol secures significant value.

The audit resulted in findings ranging in severity from critical to informative. These findings have
been organized into the following sections:

e Findings: considers findings that constitute threats to the on-chain protocol's health or
user/protocol funds;

o Informative Findings: considers findings that constitute general improvements for the on-chain
protocol or potential enhancements to its overall design and implementation;

¢ Backend Findings: considers findings discovered during the design review of the Trustless
Work protocol's off-chain backend.

8/131

Goals

The goal of the audit is threefold:

Review the high-level business logic (protocol design) of the Trustless Work contracts and
backend based on the provided documentation and code;

Review the low-level implementation of the individual Stellar-Soroban smart contract;
Perform a design review of the smart contract orchestrator of the Trustless Work system,
represented by the TypeScript code in scope;

Analyze the integration between abstractions of the modules interacting with the contract
within the scope of the engagement and reason about possible exploitative corner cases.

The audit focuses on identifying issues in the system’s logic and implementation that could
potentially render the system vulnerable to attacks or cause it to malfunction. Furthermore, the
audit highlights informative findings that could improve the safety and efficiency of the
implementation.

9/131

Scope

The scope of this audit is limited to the code contained in public and private GitHub repositories
provided by the Trustless Work team.

o Escrow contracts (Public Git Repository)

e Commit: 5d4669d69ecdf1a8c788b5e644078f797f818850 , branch develop ;
e . /contracts/ : Contains the implementation of the core on-chain logic of the Trustless
Work protocol.

« Escrow contracts, Multi Release Version (Public Git Repository)

¢ Commit: 68d9a9920a50a60223ec85c20400ee8af72d6ede , branch
multi-release-develop ;

e . /contracts/ : Contains the implementation of the core on-chain logic of the Trustless
Work protocol, with additional support for milestone-based payment releases.

o Orchestration Scripts/Backend (Provided in a private repository)

e Commit: 8087379c690324185aeaf24el14a4d1f39aef840b , branch develop ;
e ./src/ : Contains the TypeScript code implementing an orchestration system that
interfaces users with the on-chain elements of the Trustless Work platform.

The codebase under review consists of 944 lines of Rust code written for the Stellar-Soroban
ecosystem and 10,007 lines of TypeScript code, consisting of the backend orchestration scripts of
the Trustless Work platform. In preparing for the audit, Runtime Verification referenced comments
provided in the code, publicly available documentation, and supplemental materials shared by the
Trustless Work team.

A low-level audit of the protocol's on-chain components and a design review of the TypeScript
elements have been performed, focusing on validating core security elements identified during the
analysis.

The audit is strictly limited to the artifacts listed above. Frontend logic, deployment infrastructure,
and third-party integrations are outside the scope of this engagement.

Commits addressing any findings presented in this report were also reviewed to verify that
identified issues were appropriately addressed prior to report finalization.

10/131

https://github.com/Trustless-Work/Trustless-Work-Smart-Escrow
https://github.com/Trustless-Work/Trustless-Work-Smart-Escrow

Methodology and Engagement Plan

Although manual code review cannot guarantee the discovery of all possible security
vulnerabilities, as noted in our Disclaimer, we followed a structured and thorough approach to
maximize the effectiveness of this audit engagement within the agreed timeframe.

The audit spanned five calendar weeks and three days, with each phase of the process designed
to identify and validate both high-level and low-level security concerns.

During the first week, we conducted a high-level design review of the Trustless Work's Smart
Escrow. We analyzed the architecture, key trust assumptions, and the security implications of
interacting with various liquidity venues on the Stellar network. Particular emphasis was placed on
identifying core invariants that should be upheld by the protocol under all valid inputs and runtime
conditions.

Over the following week, we thoroughly reviewed the contracts' source code to detect any
unexpected (and possibly exploitable) behaviors. To facilitate our understanding of the platform’s
behavior, higher-level representations of the Rust codebase were created, including:

* Modeled sequences of logical operations, considering the limitations enforced by the identified
invariants, checking if all desired properties hold for any possible input value;

« Manually built high-level function call maps, aiding the comprehension of the code and
organization of the protocol's verification process;

* We used static analyzers and Al-assisted security analyzers such as Scout, cargo audit, and
Almanax to identify commonly identifiable issues;

o Created abstractions of elements outside the scope of this audit to build a complete picture of
the protocol's business logic in action.

This approach enabled us to systematically check consistency between the logic and the provided
Soroban Rust implementation of the system.

For the orchestration scripts implemented in TypeScript, we timeboxed a three-week effort to
understand the design of the system, comprehend its interaction surface, generate abstractions of
it, and rigorously validate them against possible threats imposed by malicious users, which
constituted a design review of the protocol's backend system.

Finally, we conducted rounds of internal discussions with security experts over the codebase and
platform design, aiming to verify possible exploitation vectors and identify improvements for the

117131

https://www.coinfabrik.com/products/scout/
https://crates.io/crates/cargo-audit
https://www.almanax.ai/

analyzed contracts. Code optimizations have also been discovered as an outcome of these
research sessions and discussions.

Findings in this report stem from a combination of:

o Manual inspection of the source code.
+ Design-level reasoning about protocol behavior and system invariants.
¢ Analysis of abstractions and threat models against the generated invariants.

Throughout the audit engagement, vulnerabilities and edge cases were reported to the Trustless
Work team in real-time, allowing for iterative discussion and clarification, which accelerated the fix-
and-verify cycle. At the end of the engagement, an additional version of the smart escrow contract
was investigated, following the strategies previously used to analyze the initial contract version.

Additionally, given the nascent Stellar-Soroban development and auditing community, we reviewed
this list of known Ethereum security vulnerabilities and attack vectors and checked whether they
apply to the smart contracts and scripts. If they apply, we checked whether the code is vulnerable
to them.

12/131

https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities

Platform Features and Logic Description

The Trustless Work system is a decentralized payment infrastructure built on the Stellar blockchain
that enables secure, milestone-based transactions between clients and service providers. This
system eliminates the need for traditional intermediaries by using smart contracts to hold funds in
escrow until predefined milestones are completed and approved.

The element in scope for this audit, Trustless Work's Smart Escrow, implements the core
functionalities related to the management of assets, milestones, and general features regarding
agreements between the different actors involved throughout its lifecycle.

Smart Escrow

At its core, Trustless Work's contracts intermediate the agreements by enabling users to instantiate
new smart escrows with specific users registered with authority roles over an agreement. This
agreement is formed virtually between two parties: one can be seen as a buyer of a service or
product, while the other is a service provider or product seller. The escrow holds the buyer's funds
until there's confirmation from all involved parties that the service has been fulfilled or that the
product has been properly delivered. Then, the escrow sends them to the seller/service provider
once all approvals are met. If these approvals are not met, users can raise disputes to reclaim their
deposited assets, with the help of the authorities involved in this agreement/negotiation.

The authorities, also referred to as actors, are described, according to Trustless Work's
documentation and our discoveries during the design review stage, as follows:

o Approver: Address of the entity requiring the service, or buying the product.

» Service Provider: Address of the entity providing the service, or selling the product.

» Platform Address: Address of the entity that owns the escrow, which can be seen as the
platform where the negotiation/agreement takes place.

+ Release Signer: Address of the user in charge of releasing the escrow funds to the service
provider.

o Dispute Resolver: Address in charge of resolving disputes within the escrow.

» Receiver: Address to which escrow proceeds will be sent.

e Funder: Although not explicitly mentioned in Smart Escrow's documentation, the funder is
another entity expected to appear in an escrow's lifetime. This entity is responsible for funding
the escrow. Anyone can be a funder, and an escrow may have one or more funders. Since

13/131

https://docs.trustlesswork.com/trustless-work/developer-resources
https://docs.trustlesswork.com/trustless-work/developer-resources

anyone can be a funder, there are no validations over address related to the funding process
of a contract.

Additionally, all roles are capable of opening disputes in case there's a disagreement regarding the
fulfillment of the milestones or the original agreement in general.

The roles above are represented throughout the smart escrow code with similar terminology, often
following standard coding conventions (no spaces, camel case).

From a lower-level perspective, the Smart Escrow comprises a constructor and 12 endpoints. The
constructor takes an admin address parameter, which is stored in instance storage.

The core endpoints for the business logic of the Trustless Work system are described below:

initialize escrow : initializes the Smart Escrow with the desired configuration. Takes an
Escrow Struct, representing the properties of the smart escrow (roles, milestones, fees, flags,
etc.) as a parameter. These properties are stored in the contract's instance storage and are
used to validate if the escrow has already been initialized before. Additionally, to be initialized,
an escrow must have at most 10 milestones, and the amount to be processed by it must be
greater than O.

fund_escrow : used to transfer assets from the buyer to the escrow. Receives a signer
address and an amount to fund the escrow as parameters. There are no validations over who
the signer is (other than the caller itself) and the amount to be deposited. The smart contract
then proceeds to get the trustline, which is the chosen token to represent the payment asset in
the agreement, and transfers it from the caller to the escrow.

release funds : used to transfer the assets to their rightful owners after the confirmation of
completion of services. This endpoint takes the release signer and the trustless work platform
addresses as parameters. In this endpoint, the state of the escrow is validated to ensure that
the assets can be released (escrow released flagis setto true), that the caller address is
indeed the release signer, that the escrow has milestones and that they are all approved, and
that the escrow is not flagged as disputed. If these conditions are respected and the escrow
has enough funds, the Trustless Work fee address and the platform address receive their fees,
and the receiver receives payment for the provided services.

approve _milestone : used by the approver to agree that a specific milestone has been
achieved. Takes the milestone index, the new status flag, and the approver address as
parameters. It is enforced that the caller must be the approver stored in the escrow
properties, that this escrow has milestones, and the index of the milestone being approved is

14/131

within the bounds supported by the escrow. If these conditions are respected, the escrow
properties in storage are modified to reflect the change in the milestone state (approved flag).

e change milestone status : used by the service provider to configure the status of an
individual milestone. Takes the milestone index, a status string, an optional string representing
the evidence of status change, and the service provider address as parameters. It is enforced
that the caller must be the service provider stored in the escrow properties, that this
escrow has milestones, and the index of the milestone being approved is within the bounds
supported by the escrow. If these conditions are respected, the escrow properties in storage
are modified to reflect the change in the milestone state (status and proof string).

e dispute_escrow : can be used by any actor configured in the escrow properties to change the
status of the escrow to disputed, preventing the full payment of the service provider in case of
failure to fulfill their end of the agreement. Receives a signer address as a parameter. This
endpoint verifies that the escrow is not already in a disputed state and that the caller is one of
the addresses configured in escrow property roles. If these requirements are met, the escrow
disputed flag is changed to true .

e resolve_dispute : In case of a dispute, the configured dispute resolver must use this
endpoint to intervene and decide how to split the funds held in the escrow between the
receiver and approver. It receives the address of the dispute resolver as a parameter, the
amount of funds that should be owned by the approver, the amount of funds that should be
owned by the receiver, and the trustless work platform address. It enforces that the caller must
have the same address as the stored dispute resolver, that the contract must have enough
balance to pay both the approver and the receiver. Once the fees for the platform and for the
Trustless Work entities are calculated and transferred, the approver and receiver are paid. The
escrow status flags are modified (resolved setto true,and disputed setto false).

Although not necessary to its proper functioning, the escrows provide an update_escrow endpoint.
It is used by the platform address to modify the escrow properties using the same structure as the
one provided in the escrow initialization. This endpoint only works successfully if the caller is the
platform address, the escrow hasn't been disputed, if its milestones are not approved, and the
escrow holds no assets. The platform address cannot be modified. Essentially, these changes can
only be performed at the beginning of the lifetime of a Smart Escrow.

Additionally, Smart Escrow has three endpoints that can be used to query general escrow
information: get_escrow, get_escrow_by_contract_id , and get_multiple_escrow_balances .

15/131

Finally, the last endpointis deploy . This function is used to deploy and initialize contracts through
the smart escrow. It takes as parameters the deployer address, a contract wasm hash, a salt
(nonce), the symbol of the function for the contract initialization, and the contract initialization
parameters. Additionally, the specified initialization function of the deployed contract is also called,
preventing front-running attacks from happening.

Smart Escrow Lifetime and Operations

In its normal flow of operations, the smart escrow is deployed, funded, its milestone statuses are
set by the service provider, gradually approved by the approver, and once all of the milestones are
met, the funds held at the escrow can be released, paying the fees to the involved entities (platform
and Trustless Work) and the recipient. This flow of actions can be visualized in Figure 1. The
transfers performed after the release funds operation are triggered as a consequence of it.

Service Release ; Trustless
[Provider] [Approver] [Signer] [Recewer] [Woit] [Platform]
» Smart Escrow

ind initialize_escrow
mes)

Any Role

deploy

I) (1| e

fund_escrow (one:or more times)

Y

change_milestone_status (one or more ti

approve_milestone (bne or more times)

'S D R T T T
| : release fundg oy

; : ; : o
: | ; » Pay TW fee L
b :_ Pay platform fee ! :
o : : i '

: : : : :
: ; L + Pay the receiver Lo
v) E : L

Figure 1: Ideal lifetime of a Smart Escrow.

Once initialized, at any point in its lifetime, the Smart Escrow can be disputed. Once in the disputed
state, only the designated dispute resolver is capable of modifying the disputed flag in the escrow

16/131

state. This authority figure has complete control over how the funds in the Smart Escrow will be
divided between the Approver and Receiver, as well as the address representing the Trustless
Work fee receiver. The resolve dispute operation internally triggers the fee payments as well as
the payments for the Approver and Receiver, as shown in Figure 2.

Dispute : Trustless
[Resolver] [Approver] [RGCEIVEF] [Work } [Platform} [Smart Escrow}

Any Role
(Except Funder)

dispute_tescrow

) A

-~ —_— —_— — —

| /5 7 resolve_dispute S
! o ; ; : : >
5 | : : | Pay:TW fee o
: Lo : : - : i
| F}ay platform feé |
| I ' ' | | b
| ‘ Pay thg approver |
; [: : : : C
: : : ' ay the receiver '

| | : < w2y : |
1 N 1 1 1 [

Figure 2: Diagram of actions performed in case of dispute in the Smart Escrow.

Multi-Release Version Extension

As an extension of the engagement, we also explored the Multi-Release Version of the Smart
Escrow. This version has the capability of performing the vesting of assets on a per-milestone
basis. The amount to be vested in the Smart Escrow, as well as the flags defining its status are not
contained in the Escrow struct anymore, instead being held in the Milestone struct .

Additionally, the management of the status of a Smart Escrow, as well as any modifications related
to the vesting amounts, is performed at a milestone level, conceptually modifying release funds ,
dispute_escrow ,and resolve dispute . As a consequence, these functions are replaced by
release_milestone_funds , dispute_milestone, resolve_milestone_dispute . The new
functions have the same logic as their Single-Release counterparts, previously elaborated on in the
Smart Escrow section above, but now receive the milestone index as a parameter to identify the
milestone the operation refers to.

17/131

Trustless Work's Backend

The Trustless Work Backend, the target of a design review during this security engagement, is a
NestJS-based API service that acts as the middleware layer between client applications and the
Stellar blockchain infrastructure. It provides a RESTful interface for managing smart escrow
contracts, handling blockchain transactions, and maintaining off-chain data persistence through
Firebase Firestore.

Core Architecture Components

The backend currently implements a modular microservices-style architecture with the following
key modules:

+ Authentication Module: Provides JWT-based authentication and authorization using Passport
strategies.

+ Stellar Contract Module: Core business logic for escrow operations, transaction building, and
blockchain interactions.

+ Firebase Module: Data persistence layer using Firestore for escrow metadata, user
information, and transaction history.

* Indexer Module: Blockchain event monitoring and data synchronization services.

+ Notifications Module: Real-time notification system for escrow status updates.

* Queue Module: In-memory transaction queue management for pending blockchain
operations.

Backend Service Architecture

The backend implements a service-oriented architecture with specialized services organized by
functional responsibility:

Authentication Services (auth.service.ts):

o User registration and login management.
+ JWT token generation and validation.
o Wallet-based authentication integration with Firebase.

User Management Services (user.service.ts):

o User profile creation and updates.
+ API key management and association.

18/131

o User data retrieval and management operations.

Firebase Services (firebase.service.ts):

o Firestore database connection and operations.
« Document management and querying.
+ Real-time data synchronization.

Stellar Contract Services:

o Transaction Builder Service (stellar-transaction-builder.service.ts): Constructs
unsigned XDR transactions for various escrow operations (deploy, fund, release, dispute
resolution).

o Helper Service (helper.service. ts). Handles signed transaction submission to the Stellar
network, processes responses, and manages escrow queries.

o Deployer Service (deployer.service. ts): Manages deployment of new escrow contracts
with proper initialization parameters.

o Shared Escrow Service (shared-escrow.service. ts): Provides common escrow operations
shared between single and multi-release contracts.

» Single/Multi Release Services (single-release.service.ts ,
multi-release.service.ts). Specialized business logic for respective escrow types.

Queue Management Services:

+ Pending Write Queue Service (pending-write-queue.service.ts): In-memory queue
management for pending blockchain operations.

¢ Pending Write Handler Service (pending-write-handler.service.ts): Processes queue
items and updates database state after successful transactions.

Data Services:

o Escrow Firestore Service (escrow-firestore.service.ts): Specialized Firestore
operations for escrow data management.

» Indexer Service (indexer.service.ts): Blockchain event monitoring and data
synchronization.

* Notifications Service (notifications.service.ts). Real-time notification system for escrow
status updates.

Contract Template Services (contract-templates.service.ts):

19/131

 WASM contract template management and deployment configurations.

API Interface

The backend currently exposes RESTful endpoints organized into the following controller modules:
Authentication Controller (auth.controller.ts):

* Request API keys for wallet-based authentication.
o JWT token generation and validation.

User Management Controller (user.controller.ts):

o Create new user profiles.

+ Update user information and wallet addresses.
¢ Manage API key associations.

¢ Retrieve user details and list all users.

Deployer Controller (deployer.controller.ts):

+ Deploy new single-release escrow contracts.
o Deploy new multi-release escrow contracts with milestone-based vesting.

Single Release Escrow Controller (single-release.controller.ts):

¢ Fund escrow with USDC tokens.
Approve milestone completion.
Release funds to the service provider.
Update escrow properties.

Initiate and resolve dispute processes.

Multi Release Escrow Controller (multi-release.controller.ts):

e Fund multi-release escrow contracts.
Approve individual milestones.

Release funds for specific milestones.
Update milestone-specific properties.
Dispute and resolve individual milestones.

Helper Controller (helper.controller.ts):

« Submit signed transactions to the blockchain.

20/131

Retrieve escrows associated with user wallet addresses.

Query escrows by participant role (approver, service provider, etc.).
Fetch specific escrow details by contract identifier.

Establish trustlines for USDC token operations.

Send funds with a memo for external transfers.

Indexer Controller (indexer.controller.ts):

o Update escrow data from transaction hashes.
e Synchronize blockchain state with database records.

Notifications Controller (notifications.controller.ts):

o Test naotification system functionality.
» Manually trigger checks for pending escrows, disputes, inactive escrows, and completed
milestones.

Data Management and Persistence

The backend maintains a hybrid storage model:

1. On-Chain Data: Core escrow logic, milestone states, role assignments, and fund balances
stored in Stellar smart contracts.

2. Off-Chain Data: Metadata, user profiles, transaction history, and cached contract states stored
in Firestore for faster query performance.

3. Data Consistency: Built-in validation mechanisms ensure synchronization between
blockchain state and database records.

Transaction Flow Management

The system implements a sophisticated transaction queue mechanism:

1. Queue System: PendingWriteQueueService manages pending blockchain operations with
metadata.

2. Transaction Building: Services construct unsigned transactions with appropriate parameters
and queue actions.

3. Client Signing: Frontend applications sign transactions using wallet integrations (Freighter,
etc.).

21/131

4. Submission and Processing: Backend submits signed transactions and processes results
asynchronously.
5. State Updates: Successful transactions trigger database updates and notification events.

Authentication and Security

JWT-based authentication with Passport integration.

Bearer token authorization for protected endpoints.

Rate limiting through NestJS Throttler (50 requests per minute).
Input validation using class-validator decorators.

CORS configuration for cross-origin requests.

External Dependencies

o Stellar SDK: Blockchain interaction and transaction management.

+ Firebase Admin: Firestore database operations and authentication.
* Swagger/OpenAPI: APl documentation and client generation.

* Development Tools: ESLint, Prettier, Husky for code quality.

Client Integration

Client applications interact with the backend through a typical flow:

1. Authentication: Obtain JWT tokens through wallet-based authentication.

2. Escrow Creation: Submit escrow parameters to deployment endpoints.

3. Transaction Signing: Receive unsigned XDR transactions for client-side signing.
4. Transaction Submission: Return signed transactions to completion endpoints.
5. State Monitoring: Query escrow status and receive real-time notifications.

The backend abstracts blockchain complexity while providing developers with familiar REST API
patterns, enabling rapid integration of escrow functionality into web and mobile applications.

22/131

Invariants

During the audit, invariants were defined and used to guide part of our search for possible issues
with Trustless Work's Smart Escrows. Using the previously explored specifications, the client's
documentation, the intended business logic, and references collected during the audit, we identified

the following invariants for the single-release smart escrow:

General

Trustline must be set on escrow contract

Failure to set a trustline must not result in loss of funds or broken smart escrow

functionality

¢ Trustline must be a valid Stellar Asset

» All funds that are paid out (either released or refunded) pay relative fees:

Fees to infrastructure provider -> Trustless Work
Platform for dispute resolution -> Platform

¢ The Smart Escrow must be initialized at contract creation time

e The Smart Escrow can never be initialized more than once

e These Smart Escrow properties can only be changed by the platform as long as no funds have
been stored yet, no milestones have been approved, and no dispute is present, otherwise they
are immutable:

Infrastructure provider fee
Platform fee
Trustline
Amount
All addresses of the specified roles
Milestones:
¢ Description

» The Trustless Work address and fee, specified in BPS (basis points), must be immutable.
o All milestones must be initialized to:

checked: empty status and empty proof
approved: false

23/131

Roles

e approver .
o Milestones that have been checked can be approved only by the approver .
e The approver receives the refunded funds minus the respective relative fees in case of a
resolved dispute.

e service_provider :

e Only the service provider can change the checked status (status: String, proof:
Optional).

e platform_address :

e Only the platform_address can change the Smart Escrow properties with the same
limitations as when initializing the Smart Escrow as long as no funds have been stored
yet, no milestones have been approved, and no dispute is present

e Onlythe platform_address receives platform fees when either funds are sent to

receiver or approver during funds release or dispute resolvement. The platform fees
that are specified by platform_fee_bps in bps (basis points, 1 BPS = 0.01%) are relative
to the funds sent, which in total amount to amount .

e release_signer :

e Only the release_signer can sign the transaction that sends the funds of the Smart
Escrow minus the fees to the receiver after all milestones have been approved and no
dispute was raised. The respective fees are sent to Trustless Work and the

platform_address inthe same transaction call.

e dispute_resolver :
e Only the dispute resolver can resolve araised dispute. The dispute resolver
decides if and how much of the specified funds, amount , are refunded to the approver .
The non-refunded funds minus the respective relative fees are sentto receiver .

e receiver .

o After checking all milestones, successful approval of all milestones, no un-resolved
dispute, sign-off by releasesigner , and having the specified amount as funds available
in the Smart Escrow, the funds specified in amount must be transferred to receiver
minus the Trustless Work fees and Platform fees.

24/131

¢ In case of a dispute, the receiver receives none, a part of, or the entirety of the Smart
Escrow funds specified by amount minus the respective relative fees. The exact amount
sentto receiver minus the fees is specified by the dispute_resolver in aresolve
dispute transaction.

o Trustless Work - infrastructure provider:

o For providing infrastructure outside the Smart Escrow smart contract, a fee akin to the
platform fee is paid out to Trustless Work. This fee is specified in bps (basis points) at
smart contract compile time. Trustless Work enforces that the very revision of the Smart
Escrow is used at runtime. None of the roles must be able to redirect the Trustless Work
fees to another address other than specified by Trustless Work themselves.

e approver , service_provider , platform_address , release_signer , dispute_resolver ,

and receiver
 All of the available roles can dispute the Smart Escrow as long as the funds were not paid
out yet. A Smart Escrow can not be disputed a second time.

Status state changes

Invariants of status state changes with linear temporal logic (LTL). The status flags reflect the
abstract states of the Smart Escrow, not necessarily the internal flags from the implementation.

* When the funds are released, the balance of the Smart Escrow is decreased by the specified
amount :
o [O(—released A ()(released) — balance — amount = newbalance; with O
(balance = newbalance))

+ when a dispute is resolved, the entire funds of the Smart Escrow (balance) must be

transferred:
« O(disputed A O(—disputed) — ((balance = 0))

« if the funds have not been released, the Smart Escrow has been disputed, and the dispute has
not yet been resolved, then the funds cannot yet be released:
o O(-released A —disputed — (O(—released))

« if any milestone is not approved, then the funds cannot be released
* I:l(\/mEmilestones(ﬁlrn‘a'pproved) — —'released)

25/131

Funds

+ Each Smart Escrow manages one set of funds. These funds can be transferred to the Smart
Escrow by different individuals with multiple transactions.
¢ Using the Smart Escrow requires paying fees to:
¢ a) Trustless Work - for providing Smart Escrow Infrastructure
e b) Platform

* The fees are paid out exactly when funds are released from the Smart Escrow in the following
functions: release _funds and resolve_dispute :
e For release_funds , the following must always hold true:

total_released_funds = sent_to_receiver + fees_sent_to_trustless_work + fees_sent_to_platform =
(1 - (trustless_work_fees_bps + platform_fees_bps)/BPS_DENOMINATOR) * amount +
(trustless_work_fees_bps/BPS_DENOMINATOR) * amount + (platform_fees_bps/BPS_DENOMINATOR) *
amount = amount where BPS_DENOMINATOR = 10000

e For resolve dispute , the funds that are sent out in total must equal the available balance of
the Smart Escrow, which might be a number higher, equal, or lower than amount . In total,
funds might be sent to either the receiver , approver , or both, excluding the fees that are
paid to Trustless Work and platform . Therefore, for resolve dispute , the following must
always hold true:

total_released_funds = sent_to_receiver + sent_to_approver +

fees_sent_to_trustless_work _for_receiver + fees_sent_to_trustless_work_ _for_approver +
fees_sent_to_platform_for_receiver + fees_sent_to_platform_for_approver =
sent_to_receiver_and_approver + fees_sent_to_trustless_work + fees_sent_to_platform = (1 -
(trustless_work _fees_bps + platform_fees_bps)/BPS_DENOMINATOR) * balance +
(trustless_work_fees_bps/BPS_DENOMINATOR) * balance + (platform_fees_bps/BPS_DENOMINATOR) *
balance = balance

e Aftera release funds , the balance must hold total of all escrow deposits - amount
where total of _all escrow_deposits is the total sum of all funds ever deposited to this
Smart Escrow.

o Aftera resolve_dispute , the balance mustbe o .

¢ The total fees can never exceed 100%, therefore the following must always hold true:

trustless_work_fee_bps + platform_fee_bps <= 1.

26/131

Findings
Findings presented in this section are issues that can cause the system to fail, malfunction, and/or

be exploited, and should be properly addressed.

All findings have a severity level and an execution difficulty level, ranging from low to high, as well
as categories in which it fits. For more information about the classifications of the findings, refer to
our Smart Contract Analysis page (adaptations performed where applicable).

27/131

https://runtimeverification.com/smartcontract-analysis

[AO01] Dispute resolver and platform can call
with arbitrary trustless_work_address and
redirect TW fees to another address

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

Some public Smart Escrow functions accept the parameter trustless work_address: Address ,
which is the address where the Smart Escrow sends the Trustless Work fees. The two functions
that accept this parameter are resolve dispute and release funds , both of which do not
validate the address. This means that the caller of the functions can send an arbitrary address
instead of the actual Trustless Work address, thereby allowing the redirection of Trustless Work
fees to an unintended recipient.

However, both resolve dispute and release funds are access-restricted. In the case of
release_funds , only the release signer can sign the function call, while for resolve dispute
only the dispute _resolver can sign the function call.

Recommendation

We recommend hard-coding the address of Trustless Work into the Smart Contract or using some
other secure method to query the address at runtime.

Status

The client has addressed this finding by hard-coding the Trustless Work address into the contract
and using it internally instead of requiring it as an input parameter. The modification was already
implemented in another version of the contract, which was deployed for testing.

28/131

[A02] Maximum relative amount of fees not
checked at initialization time

Severity: High Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The Smart Escrow initialization function does not check whether the fees exceed a maximum
amount.

There are two kinds of fees: the trustless_work fee andthe platform_fee . The
trustless work fee is setto a fixed value at Smart Contract compilation time, while the
platform fee is passed as a parameter at Smart Contract initialization time. Both fees are

relative to the total amount of funds managed by the Smart Escrow. The fees are specified in the

unit BPS, which stands for basis points with one unit being equal to 0.01%.

In case the sum of both fees exceeds 100%, the funds will be locked in the Smart Escrow.

This is due to the Smart Contract attempting a transfer with a negative amount after deducting a
relative fee of over 100%. Typically, token implementations revert on transfers with negative
amounts. In this case, the funds will be locked in the Smart Escrow. E.g., for resolve dispute ,
the following code computes the fees and net amount for approver :

let trustless_work_fee = SafeMath::safe_mul_div(
total_resolved_funds,
TRUSTLESS_WORK_FEE_BPS,
BASIS_POINTS_DENOMINATOR,
JH
let platform_fee = SafeMath::safe_mul_div(
total_resolved_funds,
platform_fee_bps,
BASIS_POINTS_DENOMINATOR,
)25
let total_fees = BasicMath::safe_add(trustless_work_fee, platform_fee)?;
let net_approver_funds = if total_resolved_funds > 0 {
let approver_fee_share =
SafeMath: :safe_mul_div(approver_funds, total_fees, total_resolved_funds)?;
BasicMath::safe_sub(approver_funds, approver_fee_share)?
} else {

29/131

Here, the variable net_approver_funds will be negative in case total fees is bigger than

total_resolved_funds .

Recommendation

We recommend that during both initialization and Smart Escrow update, the sum of the
trustless work fee and platform_fee is validated to be less than 100%.

Status

This finding has been addressed in commit ID 1da344e in branch single-release-develop .

30/131

[A03] Initialization possible with pre-approved
milestones

Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

At initialization, an Escrow object is passed that defines the Smart Escrow properties, including
the details of the milestones. For this purpose, the passed Escrow struct is validated with the

function validate_initialize_escrow_conditions .

This function does not check whether any passed milestone already has the approved flag set to
true. This allows the contract initializer to circumvent the approver role.

Recommendation
We recommend to either:

« validate during initialization and smart escrow update that the passed Escrow object has all
approved flags set to false
» override during initialization and smart escrow update the passed Escrow object and set all

approved flags to false
Status

This finding has been partially addressed in commit ID 6d979b5 in branch

single-release-develop .

31/131

[A04] Bypass of the Escrow Initialization
Validations

Severity: High Difficulty: Low Recommended Action: Fix Code Partially addressed by client

Description

At initialization, an Escrow struct is passed that defines the Smart Escrow properties. For this
purpose, the passed Escrow struct is validated with the function

validate initialize_escrow_conditions . When initializing an instance of a Smart Escrow,
using the initialize escrow endpoint, prior to definition of the escrow state, the contract
business logic enforces that it is initialized before, that the payment amount of the escrow is not
zero, and that the escrow cannot have more than 10 milestones.

Additionally, the platform role may update the Escrow properties with the public function
update_escrow , as long as no funds have been stored yet, no milestones have been approved,
and no dispute is present. This is similarly done by passing a new Escrow struct that defines the

new Smart Escrow properties.

However, in contrast to the initialization, no validation is performed on the passed Escrow struct.

Notice that, even though the initialization endpoint and the update endpoint have extremely similar
purposes (modifying the escrow state), the set of validations performed by each endpoint is
different. This creates opportunities for unpredictable behaviors, as, for instance, an escrow can be
updated to have more than 10 milestones, even though its initialization enforces that this shouldn't
be possible. Similarly, an escrow can be updated for its amount to be zero, even though its
initialization enforces that this shouldn't be possible.

Recommendation

We recommend to use the same function validate initialize escrow_conditions thatis used
during initialization to validate the Escrow properties in the update_escrow function.

Status

This finding has been partially addressed in finding 6d979b5 in branch single-release-develop .

validate_escrow_property_change_conditions and validate_initialize_escrow_conditions

32/131

still have distinct implementations.

33/131

[A05] Front-running attack by a malicious
platform on fund_escrow with
update_escrow

Severity: High Difficulty: High Recommended Action: Fix Code Addressed by client

Description

A user can fund the Smart Escrow by utilizing the Smart Escrow public function fund_escrow . For
this purpose, the user only needs to specify the amount of tokens to deposit.

The platform role may change the Smart Escrow properties, provided no funds have been
deposited, no milestones approved, and no dispute is ongoing. This can be done by executing the
Smart Escrow public function update_escrow .

This allows a malicious platform actor to try to front-run a pending user transaction that executes
the fund escrow with an update escrow transaction. This would result in a user funding a Smart
Escrow that has been changed since the fund escrow has been signed.

In particular, the changeable properties include the roles, meaning the malicious platform actor
could change the roles and subsequently steal the funds.

Recommendation

Require the user to specify the Escrow struct as a parameter in fund_escrow and validate in
fund_escrow that the passed Escrow struct matches the stored Escrow struct. In case of a
mismatch, revert, as the user might not want to fund a Smart Escrow with different properties.

Status

This finding has been addressed in commit ID 6d979b5 in branch single-release-develop .

34/131

[A06] Smart Escrow uses signed integer type
i128 without sign checks

Severity: High Difficulty: Medium Recommended Action: Fix Code Partially addressed by client

Description

The Smart Escrow uses the i128 type for multiple attributes, but is missing sign checks at
different locations. This allows for negative parameters to be passed to Smart Escrow public
functions and Smart Escrow attributes. On this topic, we highlight:

1. platform_fee

In particular, the Smart Escrow uses i128 for the constant TRUSTLESS WORK_FEE_BPS and the
Smart Escrow attribute platform_fee . While TRUSTLESS WORK_FEE_BPS is a constant and
guaranteed to be positive, platform fee isinitialized by initialize escrow Or update escrow .
While update_escrow is currently missing validation for escrow properties entirely, as outlined in
[A04] Bypass of the Escrow Initialization Validations, initialization does validate properties generally.
However, it is not checked at initialization time whether the platform_fee is negative.

This means that a Smart Contract user can specify a negative platform fee that cannot be
changed anymore once funds are transferred to the Smart Escrow. In this case, the funds would
be locked in the Smart Escrow, as both release_funds and resolve_dispute would revert
when attempting to transfer the negative amount of relative platform fees.

2. fund_escrow parameter amount_to_deposit

Typically, tokens revert on a negative amount parameter, but this behavior might vary as Soroban
tokens specifically use i128 , in case a token wants to implement functionality for negative
balances and similar. Therefore, this revert behavior of tokens should not be relied upon.

The Smart Escrow public function fund_escrow accepts the parameter

amount_to_deposit: i128 and passes that value to transfer of a token specified in the Smart
Escrow attribute trustline . As previously outlined, the Smart Escrow should not rely on tokens
reverting to negative numbers and should check whether the given amount_to_deposit is
negative.

3. resolve dispute allows negative funds parameters

35/131

The Smart Escrow public function resolve_dispute allows negative values for both
approver_funds and receiver_funds . While it is checked that the sum

approver_funds + receiver_funds is equal to the balance of the Smart Escrow, this check does
not cover the case where one of the parameters is negative, while the other is larger than

balance , such that the sum still equals the Smart Escrow balance .

4. amount

The Smart Escrow attribute amount: i128 specifies the amount to be released in release funds
and is initialized in either initialize escrow Or update_escrow . While update_escrow is
currently missing validation for escrow properties entirely, as outlined in [A04] Bypass of the
Escrow Initialization Validations, initialization does validate properties generally. Though it is not
checked at initialization time whether the amount is negative.

This means that a negative amount attribute could be specified during initialization that cannot be
changed later on once funds have been transferred to the Smart Escrow. A negative amount
attribute can cause release funds to revert.

5. milestone index parameter

The Smart Escrow uses the signed integer type i128 as the type for the milestone index
parameter for multiple contract functions. While there are either explicit or implicit bound checks in-
place, negative milestone indices might overflow when cast to an unsigned integer.

Recommendations
For handling the discussed topics above, our recommendations are, respectively:

1. We suggest that validation of the platform_fee attribute during initialization and escrow
update prevents negative values. Furthermore, we suggest that the type of platform fee and
TRUSTLESS WORK_FEE_BPS be changed to a smaller unsigned integer type, such as uis , as
the fee attributes have a maximum value as well, which is expected to be less than 10,000 and
can therefore be safely represented by a uis .

2. We suggest that a check is added in fund_escrow that validates that amount to deposit is
greater than zero.

3. Add additional checks in resolve dispute that validate that both approver funds and

receiver_funds are non-negative.

36/131

4. We suggest that validation of the amount attribute during initialization and escrow update
prevents negative values.
5. Change the signed integer type to an unsigned integer type for milestone index .

Status

This finding has been partially addressed in commit IDs 6d979b5 , 58539ca , and 33bfafb in
branch single-release-develop . Regarding topic 4, the approach used to address the issue was
to implement an enforcement that the funding amount should be greater than or equal to 0 when
handling escrow via the fund endpoint. Although this is effective for handling the escrow in its
intended usage, an escrow can still be initialized with a negative amount. To prevent issues related
to this altogether, all instances where Escrow.amount is used should be validated against negative
values, or more simply, the Escrow struct should use an unsigned type for amount .

37/131

[AO07] The Approver Can Disapprove
Milestones

Severity: Low Difficulty: Low Recommended Action: Fix Design Addressed by client

Description

The Smart Escrow contract contains a design flaw that exposes it to a griefing attack by the
Approver. While the Approver's role is to approve milestones, the approve _milestone function
allows them to both approve and disapprove milestones using a boolean flag, defined by the
new_flag parameter. This is a problem because it enables the Approver to maliciously change the
state of an already approved milestone, effectively reverting its status and disrupting the entire
escrow process. This behavior does not result in any direct financial gain for the Approver but
causes significant harm to other parties, particularly the service provider, by hindering their
progress and preventing funds from being released.

While this is not a critical vulnerability resulting in direct fund loss, it remains a serious design flaw.
A griefing attack is where an actor uses a system's intended features to disrupt without gaining a
direct financial advantage. By disapproving a previously approved milestone, the Approver can stall
the project indefinitely, causing frustration, delaying payments, and, in the case of a multi-source
funds escrow, potentially causing the entire crowdsourcing effort to fail. Since the protocol's
lifecycle depends on milestones being approved, the ability to revert a milestone's status creates a
single point of failure and a denial of service vector for the contract's functionality, which still can be
handled by forcing a dispute.

Recommendation

We recommend modifying the approve milestone function to prevent this type of attack by
removing the new_flag parameter or enforcing that it is always setto true . Design-wise,
suppose a legitimate Approver notices a problem with a previously approved milestone. In that
case, they can still invoke a dispute, forcing the intervention of an authority that can investigate the
issue.

Status

38/131

This finding has been addressed commit IDs fe2623f and 2b3ifie in branch

single-release-develop .

39/131

[A08] Exceeding Assets Will Be Permanently
Locked in The Multi-Release Smart Escrows

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

When dealing with the release of its funds, the Single-Release version of the Smart Escrow
expects a pre-determined amount to be withdrawn via the release funds endpoint or the total
balance of the escrow via the resolve dispute endpoint. If the escrow holds an excess balance
beyond the expected amount, the dispute mechanism can be used to handle it.

For the Multi-Release Smart Escrow, funds are released on a milestone basis, with pre-determined
amounts per milestone. The dispute method, which is also per milestone, ensures that the disputed
value cannot be greater than the pre-determined amount to be released for that milestone. This
means that the sum of values released via hypothetical disputes is the same as the amount
released through the proper release method, indicating that, if the balance of the Multi-Release
Smart Escrow is bigger than the amount expected to be released, the exceeding assets cannot be
withdrawn. These tokens will be permanently locked in the contract.

The caveat here comes from finding [A09] Milestones can both be released and dispute-resolved in
the multi-release smart escrows, which considers that a milestone can both be released and
disputed, meaning that, although incorrectly, the redeemable exceeding balance of a Multi-Release
Smart Escrow, in its current state, can be at most the same as its expected release value.

Recommendation

The Multi-Release Smart Escrow should implement an additional endpoint exclusively for the
dispute_resolver , which works similarly to resolve_dispute inthe Single-Release escrow.
This endpoint should work on the condition that all milestones must have either been released or
dispute-resolved. Alternatively, the limitations on the withdrawn amounts can be removed, but this
introduces the issue of being able to withdraw the full balance of an escrow through a single
milestone dispute.

Status

40/131

This finding has been addressed in commit ID 2feef92 in branches multi-receiver ,

multi-release-develop , multi-release-main , and stellar-multi-release-audit .

417131

[A09] Milestones can both be released and
dispute-resolved in the multi-release smart
escrows

Severity: Medium Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

In the multi-release smart escrows, amounts are released on a per-milestone basis. Each
milestone defines a specific amount to be released upon completion. At the same time, the smart
contract limits the amount that can be released during a milestone dispute resolution to at most that
value specified in the respective milestone.

There are no mechanisms in place that disallow a milestone dispute resolution after a milestone
has been released. Additionally, there are also no mechanisms that disallow a milestone release
after a milestone dispute resolution. Therefore, up to twice the amount specified per milestones can
be released per milestone, draining the funds of the smart escrow that are allocated for other
milestones.

In the single-release smart escrow, this is a deliberate design decision that allows withdrawal of
exceeding funds. Though this design is not suited for a smart escrow with multiple releases of
funds.

Recommendation

Add validations that enforce that dispute-resolved milestones cannot be released as well as that
released milestones cannot be dispute-resolved.

There is another issue that can cause funds to be permanently locked in the multi-release smart
escrows, described in [A08] Exceeding Assets Will Be Permanently Locked in The Multi-Release
Smart Escrows. The recommended fix reduces the amount of funds that can be recovered from the
smart escrow when locked by the issue described in [A08] Exceeding Assets Will Be Permanently
Locked in The Multi-Release Smart Escrows. Therefore it is heavily recommended to implement
the recommendations from finding [A08] Exceeding Assets Will Be Permanently Locked in The
Multi-Release Smart Escrows.

42/131

Status

This finding has been addressed in commit ID bbdfcc4 in branch multi-receiver ,

multi-release-develop , multi-release-main , and stellar-multi-release-audit .

43/131

Informative Findings

The findings presented in this section do not necessarily represent any flaw in the code itself.
However, they indicate areas where the code may need external support or deviate from best
practices. We have also included information on potential code size reductions and remarks on the
operational perspective of the contract.

44/131

[B01] Gas optimizations

Severity: Informative Recommended Action: Fix Code Addressed by client

Here are some notes on the protocol's particularities, comments, and suggestions to improve the
code or the business logic of the protocol in a best-practice sense. They do not present issues with
the audited protocol themselves. Still, they are advised to either be aware of or to follow when
possible.

token_client.balance(&contract_address) called twice
IN core/dispute.rs:46

The gas costs can be optimized by storing the result of the first invocation of
token_client.balance(&contract_address) in core/dispute.rs:46 and replacing the second
invocation with the cached result.

if token_client.balance(&contract_address) < total_funds {
return Err(ContractError::InsufficientFundsForResolution);

let fee_result = FeeCalculator::calculate_dispute_fees(
approver_funds,
receiver_funds,
escrow.platform_fee as 1128,
total_funds,
DHs

let current_balance = token_client.balance(&contract_address);

Redundant out-of-bounds check of milestone index

The function change _milestone_status uses the function
validate milestone status change conditions to validate some properties, including that the
index is within bounds, see validators/milestone.rs:19-21 :

if milestone_index < 0 || milestone_index >= escrow.milestones.len() as 1128 {
return Err(ContractError::InvalidMileStonelIndex);

45/131

This check is unnecessary, as the property is already validated in the function

change_milestone_status , See core/milestone.rs:30-33 :

let mut milestone_to_update = existing_escrow
.milestones
.get(milestone_index as u32)
.ok_or(ContractError::InvalidMileStonelIndex)?;

The function change _milestone_status is the only function that calls the validation function
validate_milestone_status_change_conditions . Afterwards, the parameter milestone_index
can be removed as well.

Similarly, the functions change_milestone_approved_flag and
validate milestone flag change conditions can be optimized in the same manner, see

validators/milestone.rs:40-42 and core/milestone.rs:62-65 .

Empty milestones checks outside of Escrow initialization
and update

Currently, it is not checked at initialization (see [B0Z2] Initialization possible with zero milestones)
whether the configured Smart Escrow milestone vector is empty. Additionally, updating a Smart
Escrow also does not validate (see [A04] Bypass of the Escrow Initialization Validations) the
passed Smart Escrow properties. Once these findings have been addressed, and respective
milestone emptiness checks added to both Smart Escrow initialization and Smart Escrow update,
any other emptiness checks can be removed from this Smart Contract.

There are three instances where the milestones are checked for emptiness:

e in validate_release_conditions at validators/escrow.rs:21-23
e in validate_milestone_status_change_conditions at validators/milestone.rs:15-17

e in validate_milestone_flag_change_conditions at validators/milestone.rs:36-38

Each of these three cases reverts if the milestone list is empty, see e.g.

validators/escrow.rs:21-23 :

if escrow.milestones.is _empty() {
return Err(ContractError::NoMileStoneDefined);

46/131

Unused admin

The admin address that is setin EscrowContract::_constructor ininstance storage with key
DataKey: :Admin is unused. Therefore the admin could be removed entirely from the Smart
Contract.

Unnecessary use of the function clone

The codebase makes use of .clone() to pass objects with ownership at function invocations at
several places that instead can or could use an immutable borrow instead. This could potentially
optimize the efficiency of the contract.

E.g., at contract.rs:46 ,aclone of e: Env is passed with ownership, because the invoked
function initialize escrow currently declares the parameter e: Env . This parameter, and
subsequent invoked functions, can be changed to e: &Env instead.

Conditional at core/escrow.rs:17-21

The function get_receiver at core/escrow.rs:17-21 implements a function to retrieve the
receiver unnecessarily complicated. The following implementation could be replaced with a
simpler one:

#[inline]
pub fn get_receilver(escrow: &Escrow) -> Address {
if escrow.roles.receiver == escrow.roles.service_provider {
escrow.roles.service_provider.clone()
} else {
escrow.roles.receiver.clone()

Replace the above code with the code below:
#[inline]

pub fn get_receiver(escrow: &Escrow) -> Address {
escrow.roles.receiver.clone()

47/131

Remove signer usedin core/escrow.rs:102

The parameter signer inthe Smart Escrow public function get multiple_escrow_balances
could be removed. It is solely used in EscrowManager::get multiple escrow balances at
core/escrow.rs:102 to authenticate the transaction, while the signer

is not further validated. This use of require_auth’ can be removed.

Disallow resolve_dispute with total funds = 0

Currently, the Smart Escrow public function resolve dispute allows for the sum of the
parameters approver_funds + receiver_funds to be equal to zero. This serves no purpose, as
resolving a dispute with a Smart Escrow balance of zero does not transfer any assets.

At the same time, resolve dispute implements additional checks at calculators.rs:85-91 and
calculators.rs:93-99 to avoid dividing by zero in case the divisor total resolved_funds is
zero. This check can be removed by additionally validating that the sum is greater than zero.

Unnecessary checks in resolve_dispute

These checks are performed in validators/dispute.rs:31-37 for resolve dispute that are
redundant, as long as [A06] Smart Escrow uses signed integer type i128 without sign checks is
resolved. [A06] Smart Escrow uses signed integer type i128 without sign checks discusses,
among other things, that the fee attributes, including platform fee , might be negative. For this
optimization, fees must not be allowed to be negative.

if approver_funds < fee_result.net_approver_funds {
return Err(ContractError::InsufficientApproverFundsForCommissions);

if receiver_funds < fee_result.net_receiver_funds {
return Err(ContractError::InsufficientServiceProviderFundsForCommissions);

The net_approver_funds = approver_funds - approver_fees <= approver_funds always
holds, as long as the fees are never negative as previously discussed, due to

calculators.rs:85-91

48/131

let net_approver_funds = if total_resolved_funds > 0 {
let approver_fee_share =
SafeMath: :safe_mul_div(approver_funds, total_fees, total_resolved_funds)?;
BasicMath::safe_sub(approver_funds, approver_fee_share)?
} else {
0

I8

The same holds for receiver_funds , akinto approver_funds .

Iterative creation of Soroban vectors instead of patching
in-place

Soroban vectors are stored in the host-environment as immutable vectors. Therefore, each
mutation of a vector incurs an overhead.

The multi-release smart escrow updates the flags of a single milestone by copying previous
milestones iteratively into a new empty vector and changing the flags of the respective milestone
simultaneously. Considering the aforementioned overhead of Soroban vectors, this is less efficient
than changing the respective milestone in-place.

See e.g. contracts/escrow/src/core/dispute.rs:113 or

contracts/escrow/src/core/escrow.rs:63 .

let mut updated_milestones = Vec::new(&e);
for (index, milestone) in escrow.milestones.iter().enumerate() {
let mut new_milestone = milestone.clone();
if index as 1128 == milestone_index {
new_milestone.flags.disputed = true;

}

updated_milestones.push _back(new_milestone);

Consider refactoring to use instead in-place mutation of the existing milestones vector.

Unnecessary write to storage

The multi-release smart escrow writes an unchanged escrow to storage in the smart contract
function fund_escrow . Consider removing this redundant write:

49/131

let escrow = EscrowManager::get_escrow(e.clone())?;
let token_client = TokenClient::new(&e, &escrow.trustline.address);

token_client.transfer(&signer, &e.current_contract_address(), &amount_to_deposit);

e.storage().instance().set(&DataKey::Escrow, &escrow);

Unused enumerator iterator and vector length check in
for loop

The multi-release smart escrow uses for loops with enumerator iterators without using the provided
enumerator index. Additionally, the for loop is wrapped in a redundant conditional that checks
whether the vector that is being iterated on is empty. Consider removing the enumerator as well as
the redundant vector emptiness check.

See e.g. contracts/escrow/src/core/validators/escrow.rs:49 Of

contracts/escrow/src/core/validators/escrow.rs:80 .

if !milestones.is_empty() {
for (_, milestone) in milestones.iter().enumerate() {
if milestone.flags.disputed {
return Err(ContractError::MilestoneOpenedForDisputeResolution);

}
if milestone.flags.approved {
return Err(ContractError::MilestoneApprovedCantChangeEscrowProperties);

Status

This finding has been addressed in commit IDS 4ee@4c2 , c87cla8, eche@be, 7b9c2bb ,
5107d34 , 7639179, af79c87 , 32c985a of the branch develop , and in commit IDs bba602a ,
9ddod39 , and ag97eefe of the branches multi-release-develop and

stellar-multi-release-audit .

50/131

[B02] Initialization possible with zero
milestones

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

At initialization, an Escrow struct is passed that defines the Smart Escrow properties, including the
number and details of the milestones. For this purpose, the passed Escrow struct is validated with

the function validate_initialize_escrow_conditions .

This function checks whether a maximum length that is hardcoded to 10 is not exceeded. However,
it does not check whether the milestones vector is empty.

A Smart Escrow with no milestones serves no purpose, and the funds cannot be paid out with
release_funds either, as this function checks whether the milestone vector is empty. As the other
function to retrieve funds, resolve dispute , does not check the length of the milestones vector,
so funds are not locked in such a Smart Contract. They can still be retrieved with
resolve_dispute , albeit with fees.

Recommendation
We recommend validating during initialization and Smart Escrow update that the milestone vector

iS not empty.

Status

This finding has been addressed in commit ecbeobe in the branch develop .

51/131

[BO3] At initialization, the decimals attribute
of Trustline Is not validated

Severity: Low Recommended Action: Fix Code Addressed by client

Description

The Smart Escrow uses the token specified in Escrow: : trustline , which contains both the token
address and its number of decimals.

The attribute decimals: u32 oftype Trustline is exclusively used in the public Smart Escrow
function get_multiple_escrow_balances that returns the balance and decimals of multiple Smart
Escrow specified in the function call.

The decimals that are returned can hold an arbitrary value specified during initialization of the
Smart Escrow that might not match the actual decimals value of the respective token used.

Recommendation
We recommend that the Smart Escrow fetch the decimals attribute at runtime instead by calling

TokenClient: :decimals .

Status

The finding has been addressed in the commit ID c76c7dd inthe branch develop .

52/131

[BO4] validate_release_conditions returns
wrong error when checking whether funds
were already released

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The function validate_release_conditions checks whether the funds were already released and
in that case returns an error. However, the function incorrectly returns an error indicating that the
Smart Escrow was already resolved, rather than specifying that the funds were already released.

See validators/escrow.rs:13-15 :

if escrow.flags.released {
return Err(ContractError::EscrowAlreadyResolved);

Recommendation

We recommend to create a new error in ContractError that indicates that the Smart Escrow was
already released and use that error instead.

Status

This finding has been addressed in commit IDs d77d7ae and 5b9344f inthe branch develop .

53/131

[BO5] validate_release_conditions does not
check whether the Smart Escrow has already
been resolved

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The function validate release conditions does not check whether the Smart Escrow has
already been resolved. Though, as observed in [B04] validate release_conditions returns
wrong error when checking whether funds were already released, the error
ContractError::EscrowAlreadyResolved is falsely returned instead of a new error that properly
indicates that the Smart Escrow has already been released.

At the same time, this error indicates that the intent was to also check that the Smart Escrow has
not already been resolved yet with resolve dispute .

Recommendation
We recommend adding a missing check in validate release conditions that the Smart Escrow

has already been resolved.

Status

This finding has been addressed in commit ID 5b9344f in the branch develop .

54/131

[B06] dispute_resolver should consent to
Smart Escrow prior to funding the escrow

Severity: Low Recommended Action: Fix Design Not addressed by client

Description

Currently, a Smart Escrow can be initialized and used right away with arbitrary role allocations,
including the dispute_resolver thatis typically managed by the platform. This means that the
initializing party can choose an arbitrary platform fee and specify the dispute _resolver address.
In case of a dispute, including scenarios where leftover assets need to be returned, the
dispute_resolver must act; otherwise, the funds are locked in the Smart Escrow. If the
dispute_resolver does act, the arbitrarily specified platform fees are enforced.

Recommendation

To avoid such a deadlock situation, the dispute resolver could be required to explicitly consent
to a given Smart Escrow after initialization or Smart Escrow updates through update_escrow . This
can be done with a new Smart Escrow public function

EscrowContract::consent(e: Env, dispute_resolver: Address, escrow_properties: Escrow)
. At the same time, fund_escrow must fail, in case the Smart Escrow has not been consented to
by the dispute_resolver .

Status

The client has acknowledged this finding.

55/131

[BO7] Smart Escrows Are Deployers Despite
Having Constructors

Severity: Informative Recommended Action: Fix Code Not addressed by client

Description

The Smart Escrow, which also has a constructor, has the capabilities of deploying and initializing
other contracts through its deploy endpoint, making it a deployer. The primary purpose of
deployer contracts on Soroban was to serve as a workaround for the initial absence of
constructors. They were used to deploy and initialize a contract atomically, mitigating the risk of
front-running attacks. Since Soroban now natively supports constructors via the _ constructor
function, a separate deployer contract is no longer necessary to perform this initialization.

The coexistence of both a deployer function and a constructor creates redundancy and is an
inefficient design pattern. The current constructor is underutilized, as it only sets an admin address
in storage that is never referenced in subsequent logic. This design choice is problematic because
it introduces complexity without providing any functional benefit. It would be more secure and
efficient to remove the deployer logic and use the constructor to handle all necessary initialization
tasks. This would streamline the contract's deployment process and reduce its attack surface.

Recommendation

To resolve this issue, we recommend either of the following two solutions. The first is to completely
remove the constructor and refactor the deployer function to handle all contract initialization. The
second, and more robust, solution is to remove the unnecessary deployer functionality and adapt
the existing constructor to perform all essential setup tasks.

Status

The client has acknowledged this finding.

56/131

[B08] Disputed Funds Don't Go Back to
Funders

Severity: Medium Difficulty: Low Recommended Action: Fix Design Not addressed by client

Description

The Smart Escrow contract, which can be used for crowdsourcing, has a limitation in its dispute
resolution mechanism. While the contract facilitates multi-party funding for a Service Provider's
project milestones, its logic for handling disputes does not consider the possible multiplicity of
funders. When a dispute is triggered and resolved, the funds are returned to the Approver, rather
than being refunded to the original funders. This creates an immediate risk for project backers, as
they could lose their investment if a project fails and a dispute occurs, unless the Approver can
keep track of funders.

Although it may be the case in some scenarios, the Approver is not the source of the funds and, as
such, should not be the recipient of a refund. This exposes the funders to a potential loss of capital,
as they are entirely reliant on the Approver's integrity and willingness to manually return the funds.
The contract's current logic does not guarantee the repayment of funds to the rightful owners,
leaving funders dependent on trust in what is intended to be a trustless environment.

Recommendation

To rectify this, the Smart Escrow contract's dispute resolution logic must be updated. The Smart
Escrow and platform must either:

1. Store the funders' addresses in persistent data, in pairs with their supplied amounts,
implementing an endpoint to allow funders to retrieve their supplied amounts in case of a
dispute, or;

2. Keep track of all funders in off-chain storage and find a way to ensure that the approver will
repay all funders with their due amounts. This approach, although feasible, requires an extra
layer of off-chain trust.

Status

The client has acknowledged this finding.

57/131

[B09] The Trustless Work Platform Does Not
Handle Storage Archival

Severity: Informative Recommended Action: Fix Code Not addressed by client

Description

When a Soroban smart contract is deployed on the Stellar network, its ledger entries, which contain
the contract's code and data, are given a Time to Live (TTL). This TTL is a specific number of
ledgers, and if it's not extended, the ledger entries will eventually expire and be moved to an
archive. This archival process is a core feature of Stellar's state management, designed to keep the
network's active ledger size manageable and performant by removing dormant data. When a
contract's ledger entries are archived, the contract becomes inaccessible for invocations until
restored. This means any funds or tokens held within it become inaccessible until the contract is
restored from the archive. This process is a key distinction from traditional blockchains, where a
contract's state is perpetually part of the active chain.

To prevent a contract from being archived, developers must actively manage its TTL. This is
typically done by submitting transactions that extend the contract's ledger entry TTL. A common
practice is to call a function on the contract that performs a state read or write, as any access to a
contract's storage automatically resets its TTL. For contracts that are not frequently used, a
dedicated "ping" or "keep-alive" function can be called at regular intervals to ensure the contract's
storage remains active. If a contract has already been archived, it can be brought back by
submitting a special transaction called a restore footprint (RestoreFootprintOp transaction). This
transaction informs the network that the contract's data is needed again, and the Stellar network
will bring the latest archived ledger entries back into the active state. This feature ensures that even
if a contract expires, its state is not lost forever and can be recovered when needed.

Smart Escrows have no means of updating their own TTL according to the implemented business
logic, and no RestoreFootprintOp is constructed in the platform's backend.

Recommendation

To avoid needing to manually reinstate the Smart Escrow data after properly modifying the storage
entries from persistent to instance, we recommend extending the time-to-live of the contract data
within the contract itself whenever the contract is interacted with. For example, whenever fetching

58/131

information from Smart Escrows using the get_escrow endpoint, extend the contract instance
storage TTL.

Additionally, the backend should be able to construct RestoreFootprintop operations to bring
back contracts from archival.

Potentially helpful resources: [1], [2].

Status

The client has acknowledged this finding.

59/131

https://developers.stellar.org/docs/build/guides/archival/create-restoration-footprint-js
https://developers.stellar.org/docs/learn/fundamentals/contract-development/storage/state-archival

[B10] The Milestone Updates Phase Can Be
Skipped

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

According to Trustless Work's documentation, the expected lifecycle of an escrow is composed of 5
stages:

1. Initiation Phase: The foundation of the process, where roles, responsibilities, and transaction
terms are established, and the escrow contract is created.

2. Funding Phase: The phase where the funds are deposited into the escrow contract, securing
the transaction and preparing for the next steps.

3. Milestone Updates Phase: As the transaction progresses, milestones are marked as
completed by the designated party, providing visibility and enabling reviews.

4. Approval Phase: The phase where milestones are reviewed and approved (or disputed),
moving the transaction closer to resolution.

5. Release Phase: Funds are released to the designated recipient based on milestone approvals
or dispute resolutions, completing the financial component of the transaction.

Although designed to follow this lifecycle, there are no validations in the code enforcing that the
Milestone Updates Phase is necessary. Milestones can be approved regardless of whether their
status is updated or not.

Recommendation

Either recognize the Milestone Updates Phase as optional or enforce its necessity in the contract's
business logic.

Status

This finding has been addressed in commit ID 93c4c37 and 898097a inthe
multi-release-develop and stellar-multi-release-audit branches.

60/131

https://docs.trustlesswork.com/trustless-work/technology-overview/escrow-lifecycle

[B11] It Is Possible To Change The Platform
Address Of A Smart Esrow

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The platform address, as previously discussed in the Platform Features and Logic Description, is
the authority representing the platform or entity responsible for the mediation of the agreement
between the service provider and, primarily, funders. Due to its role, the platform address is the
only address capable of modifying the properties of a deployed smart escrow, subject to a specific
set of validations.

The validations implemented when attempting to update a smart escrow do not consider the
possibility of the platform address itself being modified. This may introduce trust issues related to
the platform entity and strongly suggests that users should manually check the state of a smart
escrow prior to performing operations on it.

"This issue is informational because smart escrows cannot be updated after being funded, which
narrows the window in which this property could be exploited.

Recommendation

Make the platform address immutable by enforcing immutability at the contract level.

Status

The client has addressed this finding in commit ID 118a316 of the branch

single-release-develop .

61/131

[B12] Differences Between the Single and
Multi-Release Escrows

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

While reviewing the code of the Multi-Release Smart Escrow version, multiple minor differences
between the implementations have been found in sections that implement the same logic. These
differences may hinder the maintainability of both versions of the contracts."

One of these differences, however, is more significant. When resolving a milestone dispute in the
Multi-Release version, one of the parameters is named service provider_funds , with its naming
indicating that it holds the amount of funds to be sent to the service provider. However, tracing the
logic shows that these funds are actually sent to the receiver instead. In the Single-Release
version, this variable is appropriately named release funds .

Recommendation

Align the implementations of shared logic across both contract versions to improve maintainability
and reduce confusion.

Status

This finding has been addressed in the commit ID 699e25e of the branches

multi-release-develop and stellar-multi-release-audit .

62/131

Backend Findings

This section contains the findings related to the design review performed over the backend code,
which orchestrate the interactions between the front-end and, consequently, users, and the Smart

Escrows.

63/131

[TS01] In-Memory Queue Storage Causing
Data Loss and Scaling Issues

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The PendingWriteQueueService uses anin-memory Map<string, PendingWriteItem>() for
transaction queue storage, which introduces multiple critical issues:

1. Data Loss on Server Restart/Crash: All pending transactions are lost when the server
restarts, leading to incomplete blockchain operations that cannot be recovered. Users may
experience failed transactions with inconsistent state.

2. No Horizontal Scaling Support: Each server instance has an isolated queue, so load
balancer routing to different instances breaks transaction flow. A transaction started on Server
A will fail if the completion request hits Server B.

3. Memory Leak Risk: Abandoned transactions are never removed from the queue. There's no
TTL (Time To Live) mechanism for stale entries, which may cause the queue to grow
indefinitely without cleanup.

4. No Observability: Cannot monitor queue size or processing metrics, no visibility into failed
transactions across restarts, making it difficult to debug transaction issues.

Recommendation

Replace the in-memory storage with a persistent, distributed solution:

// Option 1: Redis-based queue

import { Queue } from "bull";

const pendingWriteQueue = new Queue("pending writes", {
redis: { host: "redis-server", port: 6379 },

s

// Option 2: External message queue (AWS SQS, RabbitMQ, etc.)

Implement proper cleanup mechanisms and monitoring for queue health.

64/131

Status

This finding has been addressed in commit IDs f353f3c, 0bflac9, 98b6lab ,and 4412028 .

65/131

[TS02] Open CORS Policy Allowing
Unauthorized Cross-Origin Requests

Severity: High Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The main.ts file has an overly permissive CORS configuration that allows requests from any
origin:
app.enableCors({
origin: true, //)(Allows ANY origin
methods: "GET,HEAD,PUT,PATCH,POST,DELETE",

credentials: true, //)(Dangerous with origin: true

s

This configuration creates several security vulnerabilities:

1. Cross-Site Request Forgery (CSRF): Any website can make authenticated requests to the
API

2. Data Theft: Malicious sites can access user data through browser requests

3. API Abuse: Unauthorized third parties can consume API resources without restriction

Recommendation

Restrict CORS to specific, trusted domains:

app.enableCors({
origin: ["https://yourdomain.com", "https://app.yourdomain.com"],
methods: "GET,HEAD,PUT,PATCH,POST,DELETE",
credentials: true,

s

Use environment variables to manage different origins for different environments (development,
staging, production).

Status

66/131

This finding has been addressed in commit ID 4a82d73 .

67/131

[TS03] Missing Authentication Guards on
Critical Endpoints

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description
Multiple critical endpoints lack proper authentication guards, making them publicly accessible:
1. User Endpoints: All /user/* APl endpoints don't require authentication. Users can:

e Get all users data via GET /user/get-all, including sensitive apikey information
« Update any user's data as long as they have the user's ID
o Access user profiles without authorization

2. Notification Endpoints: notifications.controller.ts endpoints lack authentication
guards, allowing:

¢ Unauthorized access to notification data
¢ Public access to sensitive notification information
» Uncontrolled access to notification operations

This creates severe security vulnerabilities, as sensitive user data and system operations are
exposed to unauthorized users.

Recommendation

Add authentication guards to all protected endpoints:

@UseGuards(AuthGuard())
@ApiBearerAuth("jwt-auth")

Implement role-based access control (RBAC) for different user types and operations. Ensure that
users can only access and modify their own data unless they have explicit administrative privileges.

Status

This finding has been addressed in commit IDs 4f7b37e , 859e8d9, fe8a6f6 ,and 2e8b7cf .

68/131

[TS04] Authorization Bypass in Escrow
Repository

Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The escrow.repository.ts file contains a critical authorization bypass vulnerability in the
findByAdvancedQuery method. When both signer and contractIds parameters are provided,
the method only validates against contractids butignores the signer validation:

} else if (contractIds && signer) {
query = this.col.where("contractId", "in", contractIds);
//)(Missing signer validation - allows access to any contract regardless of signer

}

This allows users to access escrow contracts they shouldn't have access to by providing any valid
contract IDs, bypassing the signer-based authorization mechanism.

Security Impact:

o Authorization Bypass: Users can access escrows they don't own or have rights to
+ Data Exposure: Contract data becomes accessible without proper authorization
» Privilege Escalation: Users can potentially view or interact with high-value escrows

Recommendation

Add proper signer validation to the query:

} else if (contractIds && signer) {
query = this.col

.where("contractId", "in", contractIds)

.where("signer", "==", signer);

Implement comprehensive authorization checks throughout the escrow repository to ensure users
can only access contracts they are authorized to view or modify.

69/131

Status

This finding has been addressed in commit ID f3acsda .

70/131

[TS05] Information Disclosure Through Error
Messages

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The user.repository.ts file exposes internal system information through detailed error
messages:

throw new NotFoundException(User ${id} not found');
throw new ConflictException(
‘User with address ${data.address} already exists’,

)8

These detailed error messages introduce multiple security vulnerabilities:

1. User Enumeration: Attackers can systematically discover valid user IDs by analyzing different
error responses

2. System Information Leak: Internal identifiers and data structures are exposed to potential
attackers

3. Attack Vector Discovery: Detailed errors help attackers infer the system architecture and
identify potential attack vectors

This information can be used by malicious actors to map out the user base and system structure,
facilitating more targeted attacks.

Recommendation

Use generic error messages for client responses while logging detailed information separately for
debugging:

// Generic response to client
throw new NotFoundException('User not found');

// Detailed logging for debugging (server-side only)
this.logger.warn(User lookup failed: User ${id} not found');

717131

Implement a consistent error handling strategy that:

¢ Returns generic, non-revealing error messages to clients
¢ Logs detailed information server-side for debugging
« Avoid exposing internal system details, including whether a specific user exists.

Status

This finding has been addressed in commit IDs cb5d5f6 , and b3f9255 .

72/131

[TS06] HTTP Connections Allowed in
Production Environment

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

Multiple locations in the codebase allow HTTP connections to Stellar RPC servers by using
{ allowHttp: true } . This configuration permits unencrypted communication with blockchain
nodes, which poses significant security risks in production environments.

Security Risks:

1. Man-in-the-Middle Attacks: HTTP traffic can be intercepted and potentially modified by
attackers

2. Data Exposure: Sensitive blockchain transaction data is transmitted in plain text

3. Transaction Tampering: Unencrypted communication channels can be exploited to
manipulate transaction data

This is particularly concerning for a financial application handling escrow transactions, where data
integrity and confidentiality are critical.

Recommendation

Configure the application to use HTTPS-only connections in production:

// Use environment-specific configuration
const rpcConfig = process.env.NODE_ENV === 'production'
? { /* HTTPS only - remove allowHttp */ }
: { allowHttp: true }; // Only allow HTTP in development

// Or explicitly enforce HTTPS
const rpcConfig = {
allowHttp: false // Force HTTPS connections

I8

Implement environment-specific configurations that:

e Force HTTPS connections in production and staging environments

73/131

e Allow HTTP only in local development environments
¢ Add runtime checks to prevent accidental HTTP usage in production

Status

This finding has been addressed in commit ID 6cci12b5 .

74/131

[TS07] Unsafe HTTP Methods for State-
Changing Operations

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The notifications.controller.ts uses GET HTTP methods for operations that change system
state. This violates REST principles and creates security vulnerabilities:

// Using GET for state-changing operations (incorrect)
@Get('/endpoint-that-changes-state'
someStateChangingOperation

// Modifies system state

Security and Design Issues:

1. HTTP Semantics Violation: GET requests should be idempotent and safe (no side effects)

2. CSRF Vulnerability: State changes via GET can be exploited through Cross-Site Request
Forgery attacks

3. Unintended Side Effects: GET requests can be cached, prefetched, or triggered by web
crawlers, causing unintended state changes

4. Security Tool Confusion: Security scanners and firewalls may not properly analyze GET
requests for malicious state changes

CSRF Vulnerability:
Websites can use safe requests such as GET to load static resources for websites such as images,
€.¢g.. . This can be exploited to
make clients of such websites send malicious GET requests to other websites. Cookies that are
marked as SsameSite=None are always sent alongside these requests. Cookies that are marked as
SameSite=Lax are only added to safe requests such as GET. In case the cookies are to be utilized
by the backend, this could be a source of potential security vulnerabilities, as cookies are typically
marked as SameSite=Lax .

Recommendation

75/131

Change GET methods to appropriate HTTP methods for state-changing operations:

// Use POST for operations that create or modify state
@Post('/endpoint-that-changes-state')
someStateChangingOperation() {

// Modifies system state

// Use PUT for idempotent updates
@Put('/resource/:id")
updateResource() {

// Updates existing resource

// Use DELETE for deletion operations
@elete('/resource/:id")
deleteResource() {

// Removes resource

Follow REST conventions:

GET: Retrieve data (read-only, idempotent)

POST: Create new resources or non-idempotent operations
PUT: Update existing resources (idempotent)

DELETE: Remove resources

Status

This finding has been addressed in commit ID 27c7ebe .

76/131

[TS08] Type Safety Issues - From 'any' Types
to DocumentData Casting

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The codebase previously made extensive use of the any type throughout multiple files, which
compromised TypeScript's type safety benefits. This originally affected:

Repository Layer:

e user.repository.ts : Functions like getAllUsers, findById , create , addApiKey ,
update , updateAddress returned Promise<any>
e escrow.repository.ts : Variables like const raw = doc.data() as any bypassed type

checking
e escrow-firestore.service.ts : Parameters like escrowProperties: any and return types

with data?: any
Utility Functions:

e firebase.utils.ts : Type annotations like error: any in try/catch blocks
e parse.utils.ts : Multiple functions used any for parameters and return types
e stellar-transaction-builder.service.ts :Various any types throughout

Progress Made:
The explicit any types have been largely removed from the codebase, which is a significant

improvement.

Remaining Issue:
While the code now uses admin.firestore.DocumentData (which is better than any), it still lacks

specific type annotation:

Current Issue:

const escrow = doc.data(); // Type: FirebaseFirestore.DocumentData

Areas Needing Specific Type Casting:

77/131

e escrow.repository.ts : Variables like const raw = snap.data()! and
const raw = doc.data() use generic DocumentData

e notifications.service.ts : const escrow = escrowDoc.data() ,
const escrow = doc.data() in multiple functions lack proper type annotations

e user.repository.ts : Document data retrieval functions return generic DocumentData
instead of User types

e escrow-firestore.service.ts : Firestore operations use generic types instead of specific
escrow interfaces

Type Safety Impact:

* Loss of IntelliSense and autocomplete for specific document properties
* No compile-time checking for property access

o Potential runtime errors when accessing properties that may not exist
¢ Reduced code maintainability and documentation value

Recommendation

Cast DocumentData to specific types that match the actual document structure:

// Instead of:
const escrow = doc.data // Type: DocumentData

// Use specific casting:
const escrow = doc.data() as FirestoreEscrowDocument

// or

const escrow = doc.data() as SingleReleaseEscrow

// For notifications service:
const escrow = escrowDoc.data as FirestoreEscrowDocument

// For user repository:
const userData = doc.data as FirestoreUserDocument

// Create specific Firestore document interfaces:
interface FirestoreEscrowDocument

contractId: string

title: string

description: string

amount?: number

78/131

status: string
createdAt: FirebaseFirestore.Timestamp
updatedAt: FirebaseFirestore.Timestamp

// ... other escrow properties

interface FirestoreUserDocument
address: string
email?: string
name?: string
apiKey?: string
createdAt: FirebaseFirestore.Timestamp
// ... other user properties

Benefits of Specific Type Casting:
o Full IntelliSense and autocomplete support
o Compile-time property validation
» Better code documentation
¢ Reduced runtime errors
+ Improved refactoring safety

Status

This finding has been addressed in commit IDs 67c890c , bdf8dé4 , 4b5a87a, fOb34c3,
55fa23b , and 01724da .

79/131

[TS09] Incorrect Validation Decorators for
Numeric Fields

Severity: Low Recommended Action: Fix Code Addressed by client

Description

The single-release-escrow.class.ts file contains incorrect validation decorators where numeric
fields are decorated with @rsstring() instead of the appropriate @IsNumber() decorator:

//)(Incorrect validation
@IsString()
amount: number;

@IsString()
approverFunds: number;

@IsString()
receiverFunds: number;

@IsString()
platformFee: number;
This mismatch between the validation decorators and the actual data types creates several issues:

1. Runtime Validation Failures: String validation will fail when receiving valid numeric inputs
2. Type Safety Compromise: The type system expects numbers but validation expects strings
3. API Contract Confusion: Unclear whether the API expects strings or numbers

4. Potential Data Corruption: Inconsistent type handling can lead to incorrect data processing

Recommendation

Use the correct validation decorators that match the TypeScript types:

// Correct validation
@IsNumber()
amount: number;

@IsNumber ()

80/131

approverFunds: number

@IsNumber

receiverFunds: number

@IsNumber
platformFee: number

Additionally, consider adding more specific numeric validations:

@IsNumber

@IsPositive() // Ensure positive values for amounts
@Min(0.01) // Minimum transaction amount

amount: number

Review all DTO classes to ensure validation decorators match their corresponding TypeScript
types.

Status

This finding has been addressed in commit ID eesg2a6e .

81/131

[TS10] Client-Side Timestamps Creating Data
Inconsistency

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

Multiple files throughout the codebase use client-side timestamps (new Date()) instead of server-
side timestamps for Firestore operations. This creates several critical issues:

Problems with Client-Side Timestamps:

1. Timezone Issues: Clients in different timezones generate inconsistent timestamps

2. Clock Drift: Client system clocks may be inaccurate or out of sync

3. Non-Atomic Operations: Client timestamps don't reflect the actual database write time
4. Security Risk: Clients can manipulate timestamps maliciously

Affected Files:

e repositories/escrow.repository.ts :Uses new Date() for updatedAt and createdAt

e stellar-contract/escrow/firestore-services/escrow-firestore.service.ts : Uses
new Date() for updatedAt

e stellar-contract/queue/pending-write-handler.service.ts :Uses new Date() for
updatedAt

e firebase/converters/escrow.repository.ts : Uses new Date() as fallback values

Current Problem:

// Inconsistent client-side timestamps
isActive: true,

updatedAt: new Date(),

createdAt: new Date(),

Recommendation

Replace client-side timestamps with Fieldvalue.serverTimestamp() :

82/131

import { FieldValue } from 'firebase-admin/firestore'

// Use server timestamps for consistency
isActive: true

updatedAt: FieldValue.serverTimestamp
createdAt: FieldValue.serverTimestamp

Benefits of server timestamps:

Consistent timezone (server timezone)

Accurate timing (actual database write time)

Atomic operations (timestamp is set when the write occurs
Security (clients cannot manipulate timestamps)

Proper ordering of operations

Also update milestone timestamps (approvedAt , completedAt) for consistency.

Status

This finding has been addressed in commit IDs 7942bd4 , and 8360e9b .

83/131

[TS11] Missing Input Validation and Type
Annotations

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

Several functions throughout the codebase lack proper input validation and explicit type
annotations, creating potential runtime errors and security vulnerabilities:

Missing Type Annotations:
1. parse.utils.ts :The adjustPricesToMicrouspc function has missing type annotation for

the decimals parameter:

export function adjustPricesToMicroUSDC(price: number, decimals): string {

2. firebase/converters/escrow.repository.ts : Converter functions lack explicit parameter
types:
toFirestore: (data) => ({

fromFirestore: (snap: QueryDocumentSnapshot) =>

Missing Input Validation:
Functions accept parameters without validating them:

¢ Finite number checks

* Range validation

» Non-negative number validation
o Null/undefined checks

Security and Reliability Risks:

1. Runtime Errors: Invalid inputs can cause unexpected crashes
2. Data Corruption: Unvalidated inputs can corrupt calculations
3. Security Vulnerabilities: Malicious inputs might exploit undefined behavior

Recommendation

84/131

Add explicit type annotations and comprehensive input validation:

// Add proper typing and validation
export function adjustPricesToMicroUSDC(price: number, decimals: number): string {
if (!Number.isFinite(price) || price < 0) {
throw new Error('Price must be a finite, non-negative number');

}
if (!Number.isFinite(decimals) || decimals <= 0) {
throw new Error('Decimals must be a positive, finite number');

// ... rest of function

// Fix converter type annotations
toFirestore: (data: FirestoreSingleReleaseEscrow) => ({
fromFirestore: (snmap: QueryDocumentSnapshot) =>

Implement consistent validation patterns:

o Type guards for complex objects

+ Range validation for numeric inputs

o Format validation for strings

¢ Null/undefined checks where appropriate

Status

This finding has been addressed in commit ID 6667272 .

85/131

[TS12] Unreliable Type Guard Functions and
Interface Design Issues

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

Unreliable Type Guards

The isRawSingleEscrow() and isRawMultiEscrow() functions use property presence
"amount" in data) as discriminants instead of the explicit type field. This approach is fragile

and may lead to incorrect type narrowing:

// Current fragile approach
export function isRawSingleEscrow(data: RawEscrowData): data is RawSingleEscrow {
return "amount" in data; //)(Fragile - relies on property presence

}

Interface Inconsistencies:
Different flag naming conventions between single and multi-release escrows create confusion:

interface RawSingleFlags {
dispute: boolean; //)(Different naming
release: boolean; //)(Different naming
resolved: boolean;

interface RawMultiFlags {
disputed: boolean; //)(Different naming
released: boolean; //)(Different naming
resolved: boolean;
approved: boolean;

Missing Interface Consolidation:
RawSingleEscrow and RawMultiEscrow share common properties but don't extend a base
interface, leading to code duplication.

86/131

Recommendation

Fix Type Guards to Use Discriminant Field:

export function isRawSingleEscrow(data: RawEscrowData): data is RawSingleEscrow
return data.type === "single-release"

export function isRawMultiEscrow(data: RawEscrowData): data is RawMultiEscrow
return data.type === "multi-release"

Standardize Flag Naming:
Choose consistent naming convention (either past tense or present tense) for all flag interfaces.

Create Base Interface:

export interface RawEscrow
title: string
roles: RawRoles
description: string
engagement_1id: string
platform_fee: string | number | bigint
trustline: RawTrustline

receiver_memo: string | number | bigint

export interface RawSingleEscrow extends RawEscrow
type: "single-release"
amount: string | number | bigint
flags: RawSingleFlags
milestones: RawSingleMilestone

Status

This finding has been addressed in commit ID 3c84811 .

87/131

[TS13] Environment Configuration
Management Issues

Severity: Informative Recommended Action: Document Prominently Addressed by client

Description

Environment Variable Inconsistencies:
The .env.example file contains inconsistencies with actual code usage:

1. Firebase Configuration Mismatch:

e .env.example UuSeS: FIREBASE_ PROD_PROJECT_ID , FIREBASE_PROD_CLIENT_EMAIL ,

FIREBASE_PROD_PRIVATE_KEY
o Actual code uses: FIREBASE_PROJECT_ID , FIREBASE_CLIENT_MAIL ,

FIREBASE_PRIVATE_KEY

2. Unused Environment Variables:

e ISSUER_ADDRESS , USDC_SOROBAN_CIRCLE_TOKEN_TEST , API_SECRET_KEY_WALLET ,
API PUBLIC KEY WALLET are defined but not used

3. Environment Value Mismatch:

e .env.example defines ENVIRONMENT=LOCAL but code only uses DEV and PROD

Configuration Management Issues:

1. Direct Environment Variable Usage: Code directly accesses process.env instead of using
NestJS @nestjs/config for type safety

Recommendation

Fix Environment Configuration:

// Update .env.example to match actual usage
FIREBASE_PROJECT_ID=

FIREBASE_CLIENT_MAIL=

FIREBASE_PRIVATE_KEY=

ENVIRONMENT=DEV

88/131

Use Typed Configuration:

// Instead of process.env.FIREBASE_PROJECT_ID
constructor(private configService: ConfigService
const projectld = this.configService.get<string>('FIREBASE_PROJECT_ID'

Clean Up Unused Environment Variables:
Remove unused variables from .env.example orimplement their usage in the codebase if they
are intended for future features.

Status

This finding has been addressed in commit ID 702c7ed .

89/131

[TS14] Code Quality and Documentation
Issues

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

Missing APl Documentation:
Multiple DTOs lack proper Swagger documentation, making the API difficult to understand and use:

e LoginUserDto, FundwWithMemoDto , UpdateUserDto mMmissing @ApiProperty decorators
e notifications/test controller lacks @ApiTag("Notifications")
¢ Internal endpoints not excluded from Swagger docs

Missing Field Validation:
DTOs lack proper validation decorators for critical fields:

e CreateUserDto.address should use @IsAddressvalid() validator for Stellar address format
validation

e LoginUserDto.wallet field lacks wallet address validation

o Email fields should use @1semail() for proper email format validation

Unused Code and Files:

e src/repositories/index.ts -empty file

e src/firebase/converters/index.ts - empty file

src/common/dto/escrow-payload.dto.ts - EscrowPayloadDto interface unused

e exceptions/engagement-id.exception.ts - EngagementIdException never used

Entire auth directory may be obsolete

Inconsistent Naming Conventions:

e Folder naming: src/stellar-contract/deployer/Dto VS dto elsewhere
o Variable naming: milestone index should be milestoneIndex (camelCase)
¢ Collection names hardcoded throughout instead of using enums

Logging and Error Handling:

e console.log used instead of NestJS Logger throughout the codebase

90/131

¢ Inconsistent error handling patterns
* Missing structured logging for debugging and monitoring

Code Structure Issues:

e Redundant code: .then((escrow) => escrow) in helper.service.ts
e Type coercion: Using == instead of === in comparisons

¢ Repository bypass: EscrowFirestoreService.saveEscrow() bypasses repository pattern

Duplicated code:

e helper.service.ts:631:handlePendingWrite and

indexer.service.ts:23:updateFromTxHash implement the same functionality
e handlependingwrite takes two arguments instead of one, but both arguments are
expected to always be equal, see only usage at

src/stellar-contract/helper/helper.service.ts:97

Wrong logging and error messages:
The codebase contains wrong logging and error messages, most likely due to copy and paste of
program code:

e src/utils/firebase.utils.ts:202:createNotification : Error fetching trustline
Validation pipe handling:

e src/main.ts:17 defines a global validationPipe to be used for all endpoints, while some

endpoints define an additional similar validationPipe , such as e.g. the endpoints in
src/users/user.controller.ts :

Explicit configuration values:

e (@UseGuards(AuthGuard()) : This should reference the respective authentication guard that is
supposed to be used explicitly, in case additional authentication guards are added to the
backend

e €.0.. @UseGuards(AuthGuard('jwt')) oOr @UseGuards(AuthGuard('local'))

// src/main.ts:17

app.useGlobalPipes
new ValidationPipe
transform: true

91/131

whitelist: true,
forbidNonWhitelisted: true,
b,
new ValidationPipe({
exceptionFactory: (errors: ValidationError[]) => {
const formattedErrors = errors.reduce(
(acc, err) => {
acclerr.property|

Object.values(err.constraints);

return acc;
Je
{} as Record<string, string[]>,
)s
return new BadRequestException({
statusCode: 400,
error: "Bad Request",
message: "Validation failed",
details: formattedErrors,
19k
3,
b,
)

// src/users/user.controller.ts:25
@Post("create")
@HttpCode(HttpStatus.CREATED)
@UsePipes(new ValidationPipe({ whitelist: true, forbidNonWhitelisted: true }))
async createUser(@Body() createUserDto: CreateUserDto) {
return this.userService.create(createUserDto);

Inconsistent database schema:

e src/stellar-contract/queue/pending-write-handler.service.ts:42 writes approvedAt

for single-release milestones, but not for multi-release milestones

Improper variable names:
src/stellar-contract/queue/pending-write-handler.service.ts:100 defines the variable

completedAt that should instead be called lastUpdatedAt or similar

« this variable is updated everytime the status is updated instead of only when the status is

complete

92/131

Recommendation

Improve APl Documentation:

@ApiProperty({
description: 'User wallet address',
example: 'GXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXXXXKX '

)

wallet: string;

@ApiTag("Notifications")
@Controller('notifications')

Add Proper Field Validation:

// Use existing custom validators for address validation
@IsAddressValid()

@IsNotEmpty()

address: string;

// Add email validation
@IsOptional()
@IsEmail()

email?: string;

// Apply wallet validation consistently
@IsAddressValid()

@IsNotEmpty()

wallet: string;

Clean Up Unused Code:

+ Remove empty files and unused interfaces

o Consolidate or remove obsolete auth directory
* Remove redundant code patterns

* Reduce duplicated code

Standardize Naming:

// Use enums for collection names
enum Collections {
ESCROWS = 'escrows',

93/131

USERS = 'users'
CONTRACT_TEMPLATES = 'contract-templates'

// Use camelCase for variables
milestoneIndex

// instead of

milestone_1index

Implement Structured Logging:

// Replace console.log with NestJS Logger
private readonly logger = new Logger(ServiceName.name
this.logger.log('Operation completed successfully'

Use Strict Equality:

// Replace == with ===

if (tag === "u64"
// instead of
if (tag == "u64"

Duplicated code:
Review the codebase for duplication and consolidate repeated logic where appropriate.

Wrong logging and error messages:
Review all logging and error messages and fix wrong messages accordingly.

Validation pipe handling:

Standardize the validation pipe that is used everywhere and remove redundant local validation
pipes.

Explicit configuration values:

Use explicit configuration values, where implicit ones are obscure or might change. E.g., change all
occurrences of @UseGuards(AuthGuard()) with @UseGuards(AuthGuard('jwt')) , where JIWT
authorization is the Auth Guard that should be used.

Inconsistent database schema:
Create a proper schema of the database and review whether the schema is consistent for similar
entities such as single-release escrows and multi-release escrow. Ensure that the codebase does
not violate the database schema.

94/131

Improper variable names:
Review whether all variable names in the codebase accurately reflect the content of the variable or

database field.

Status

This finding has been addressed in commit ID c8e5a65 .

95/131

[TS15] Data Architecture and Repository
Pattern Issues

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

Repository Pattern Bypass:
The EscrowFirestoreService.saveEscrow() method bypasses the repository layer and calls
addEscrow() directly, ignoring carefully designed type conversions:

// Current: Bypasses repository pattern
await this.firestoreService.addEscrow(docId, escrowProperties);

// Should use: Repository methods for proper type conversion
if (escrowProperties.type === "single-release") {
await this.escrowRepository.saveSingle(escrowProperties as SingleReleaseEscrow);

This bypass means that escrowrepo.saveSingle() and mapToFirestoreSingle() methods are
never called during escrow deployment, causing data inconsistency and ignoring proper type
conversions.

All database queries should be defined in FirebaseService

The Firebase service provides the method getFirestore() that returns the Firestore instance that
can be used to query the database. This leads to query definitions throughout the codebase,
instead of having all queries collectively declared in the FirebaseService.

Hardcoded Collection Names:
Collection names are hardcoded throughout the codebase instead of using centralized constants:

e notifications.service.ts: "escrows"
e escrow.repository.ts: "escrows"
e user.repository.ts: "users"

e contract-templates.service.ts . "contract-templates"

Hardcoded values:
Numerical values are hardcoded as values in the code instead of using constant variables:

96/131

e src/utils/parse.utils.ts:25: BigInt(Math.round(price * 1e7))

Type Safety Issues in Firestore:

e Using admin.firestore.DocumentData instead of specific types
e const escrow = doc.data() lacks proper type annotation
* Loose type definitions that don't match actual usage patterns

Interface Design Questions:
Whether Firestore interfaces should use flat structures (Record<string, string>) for easier
gueries or typed objects (Roles , Trustline) for better type safety.

NestJS modules:

e src/config/firebase.config.ts is nota module, but should be due to providing functions
and usage of services

Recommendation

Fix Repository Pattern:

// Update EscrowFirestoreService.saveEscrow() to use repository
// Note: Consider adding validation before casting for better type safety
if (escrowProperties.type === "single-release"
await this.escrowRepository.saveSingle
escrowProperties as SingleReleaseEscrow

else
awailt this.escrowRepository.saveMulti
escrowProperties as MultiReleaseEscrow

Define all database queries in FirebaseService
Move all database queries to FirebaseService and remove the method getFirestore to
disincentivize creating queries outside of FirebaseService .

Centralize Collection Names:

enum Collections
ESCROWS = 'escrows'

97/131

USERS = 'users'
CONTRACT_TEMPLATES = 'contract-templates'
NOTIFICATIONS = 'notifications'

// Usage
this.col = this.firestore.collection(Collections.ESCROWS

Centralize constant magic values:
Create proper constant variables with names and potentially documentation that describe the
respective value instead of using undocumented magic values directly in program code.

Improve Type Safety:

// Use specific types instead of DocumentData
const escrow = doc.data() as FirestoreEscrowDocument

Standardize Interface Design:
Keep current flat structure for Firestore queries but improve conversion logic between flat and
typed structures.

Usage of NestJS modules
Use NestJS modules and services when proper.

Status

This finding has been addressed in commit IDs de05371, c8e5a65, a4f8570 , 9dd6787 , and

5cece24 .

98/131

[TS16] Development Tooling and Code Quality
Setup

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The codebase previously lacked proper development tooling and code quality enforcement
mechanisms:

Original Issues:

1. Missing ESLint Configuration: No ESLint setup for TypeScript code quality enforcement
2. No Pre-commit Hooks: No automated code quality checks before commits

3. Outdated Husky Version: Need for modern pre-commit hook management

4. Missing Linting Integration: No integration between ESLint and development workflow

Impact of Missing Tooling:

» Inconsistent code formatting and style

+ Type safety issues not caught during development
¢ Manual code review burden increased

¢ Potential for committing problematic code

Recommendation
Implement comprehensive development tooling, including:

o ESLint with TypeScript support

o Husky for pre-commit hooks

» Prettier for code formatting

» Lint-staged for efficient pre-commit processing

Required Setup:

Install ESLint and related packages
npm install --save-dev @typescript-eslint/parser @typescript-eslint/eslint-plugin eslint

Install Husky for git hooks

99/131

npm install --save-dev husky

Install Prettier and integration
npm install --save-dev prettier eslint-config-prettier eslint-plugin-prettier

Install lint-staged for efficient pre-commit processing

npm install --save-dev lint-staged

Status

This finding has been addressed in commit IDs 67c¢890c , fc3eb3a, 15a3f13, 3a27c6a ,
5329a3b , 35cOcba ,and 6c354fe .

1007131

[TS17] Backend allows for submitting any
pre-sighed transaction to the Stellar
blockchain

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The function sendTransaction at src/stellar-contract/helper/helper.service.ts:74 takes
a signed transaction and sends the transaction to the Stellar blockchain. However, the intended
flow is that only transactions originally generated by the backend, signed by the end-user on the
client side, and then returned to the backend should be submitted.

However, sendTransaction submits a transaction before verifying whether the respective
transaction has been created by the backend, i.e., checked whether the transaction hash is in the
pendingWriteQueue . As a result, the backend can be abused to send arbitrary transactions to the
blockchain.

const response = await this.horizonServer.submitTransaction(transaction);

const pending = this.pendingWriteQueue.get(txHash);
if (!pending) {
throw new HttpException(

{
status: HttpStatus.BAD_REQUEST,

message: ‘No pending write for tx ${txHash}",

}s
HttpStatus.BAD_REQUEST,

)E

Recommendation

Check whether the transaction hash is in the pendingwriteQueue before submitting the
transaction to the blockchain. In case the hash is not in the queue, abort and do not submit the
transaction.

1017131

Status

This finding has been addressed in commit ID 9a4006e .

102/131

[TS18] Singleton State Sharing in Transaction
Builder

Severity: Medium Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The stellarTransactionBuilderService is registered as a singleton in NestJS but maintains
mutable instance state, resulting in critical race conditions when multiple requests access the
service at the same time. This design flaw can lead to transactions being built with incorrect
parameters, potentially causing financial losses in the escrow system.

The service is registered as a singleton in stellar.module.ts but maintains shared mutable state
across all requests:

@Injectable()

export class StellarTransactionBuilderService {
private signer!: string; //)(Shared across all requests - User identity
private contractId!: string; // >(Shared across all requests - Contract address
private wasmHash?: string; //)(Shared across all requests - WASM deployment hash
private method!: string; //)(Shared across all requests - Smart contract method
private operationFunc?: string; //)(Shared across all requests - Operation function

private params: xdr.Scvall]| = []; //)(Shared across all requests - Method parameters
private constructorArgs?: xdr.Scvalll; //)(Shared across all requests - Constructor args

private fee: string = "1000"; //)(Shared across all requests - Transaction fee

private useHorizon: boolean = false; //)(Shared across all requests - Server selection

private addMemo?: string; //)(Shared across all requests - Transaction memo

private queueAction?: { ... }; //)(Shared across all requests - Queue operations
}

Critical race condition scenarios include;

Scenario 1: Fee Contamination

// Request A (SharedEscrowService)
txBuilder.setFee("100").buildUnsignedXDR();

// Request B (SingleReleaseService) - concurrent
txBuilder.setFee("5000").buildUnsignedXDR();

103/131

//)(Request A might use fee "5000" instead of intended "100"

Scenario 2: Contract ID Cross-contamination

// Request A sets contractId "CONTRACT_ABC"
awailt txBuilder.setContractId("CONTRACT_ABC")...

// Request B sets contractId "CONTRACT_XYZ"
await txBuilder.setContractId("CONTRACT_XYZ")...

//)(Request A continues and might use "CONTRACT_XYZ"

Scenario 3: Queue Action Mix-up

// Request A: Fund escrow operation
txBuilder.addToQueue("FUND_ESCROW", "single-release", {...}, queue);

// Request B: Release funds operation
txBuilder.addToQueue("RELEASE_FUNDS", "multi-release", {...}, queue);

//)(Request A might trigger "RELEASE_FUNDS" action instead

Many services (SharedEscrowService , SingleReleaseService , MultiReleaseService , and
DeployerService) use the same singleton instance, creating potential for parameter
contamination between concurrent operations across all transaction-related functionality in the
system. The reset() methodin finally blocks provides insufficient protection as race
conditions occur between method calls, not after completion.

Critical Issue: Incomplete Reset Function

The reset() method fails to reset ALL shared fields, making some race conditions persist even
longer:

reset(): void {

this.signer = "";
this.contractId = "";
this.method = "";

[1;

this.useHorizon = false;

this.params

this.addMemo = undefined;

104/131

this.queueAction = undefined
this.constructorArgs =

//)(MISSING - These fields are NEVER reset:

// this.fee = "1000"; // Fee persists across requests!
// this.wasmHash = undefined; // WASM hash persists!

// this.operationFunc = undefined; // Operation func persists!

This means fee , wasmHash , and operationFunc contamination persists across multiple
requests until explicitly overwritten.

This affects all transaction-related operations in the system and can lead to wrong fees, operations
on incorrect contracts, or funds released to wrong parties.

Recommendation

We recommend implementing either a request-scoped service or a stateless factory pattern to
eliminate shared mutable state:

Option A: Request-Scoped Service

@Injectable({ scope: Scope.REQUEST
export class StellarTransactionBuilderService
// Each request gets its own instance

Option B: Stateless Factory Pattern (Preferred)

@Injectable
export class StellarTransactionBuilderFactory
createBuilder(): StellarTransactionBuilder
return new StellarTransactionBuilder(this.sorobanServer, this.horizonServer

This ensures each operation gets a fresh, isolated builder instance with no shared state between
concurrent requests.

Current Problematic Usage:

105/131

//)(Both services share the same mutable instance
// ServiceA
await this.txBuilder.setFee("100").buildUnsignedXDR();

// ServiceB (concurrent)
await this.txBuilder.setFee("200").buildUnsignedXDR();
// ServiceA might get fee "200"!

Fixed Usage with Factory:

// Each operation gets fresh, isolated builder

// ServiceA

const builderA = this.txBuilderFactory.createBuilder();
await builderA.setFee("100").buildUnsignedXDR();

// ServiceB (concurrent)

const builderB = this.txBuilderFactory.createBuilder();
await builderB.setFee("200").buildUnsignedXDR();

// No interference between operations

Status

This finding has been addressed in commit ID 575a047 .

106/131

[TS19] Insecure private key storage in
singleton service instance variables

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The HelpersService stores sensitive private key material in an instance variable

(sourcekeypair), which creates security risks in a singleton service architecture. This pattern
retains private keys in memory longer than necessary and potentially exposes them across multiple
method calls within the same service instance.

@Injectable()
export class HelperService {
private sourceKeypair: StellarSDK.Keypair; //)(Private key stored in instance variable

async establishTrustline(sourceSecretKey: string): Promise<ApiResponse> {
try {
this.sourceKeypair = StellarSDK.Keypair.fromSecret(sourceSecretkey); //)(Stored in
instance
const account = await this.sorobanServer.getAccount(
this.sourceKeypair.publicKey(), //)(Used from instance variable

)§

// ... rest of method uses this.sourceKeypair
const result = await signAndSendTransaction(
transaction,
this.sourceKeypair, //)(Private key passed from instance variable
this.sorobanServer,
false,

Security Concerns:

1. Extended Memory Exposure: Private keys remain in memory as instance variables until the
service is garbage collected or the key is overwritten

107/131

2. Cross-Method Accessibility: Any method in the service can access this.sourceKeypair
even if not intended

3. Debugging/Logging Risk: Instance variables are more likely to be accidentally exposed in
debug output or error logs

4. Memory Dumps: Private keys stored in instance variables are more likely to appear in
memory dumps during debugging

Current Risk Level: While the current usage in establishTrustline() method appears to use
the key only within the same method scope, storing sensitive cryptographic material in instance
variables is an anti-pattern that violates the principle of least exposure.

Recommendation

Limit private key scope to local variables within methods and clear references as soon as they are
no longer required:

async establishTrustline(sourceSecretKey: string): Promise<ApiResponse>
try
// _J Use local variable instead of instance variable
const sourceKeypair = StellarSDK.Keypair.fromSecret(sourceSecretKey

const account = await this.sorobanServer.getAccount
sourceKeypair.publicKey

const usdcAsset = new StellarSDK.Asset("USDC", this.usdcTokenPublic
const operations =
StellarSDK.Operation.changeTrust({ asset: usdcAsset

const transaction = buildTransaction(account, operations

const result = await signAndSendTransaction
transaction
sourceKeypair, // _J Pass local variable
this.sorobanServer
false

// _J Optional: Explicitly clear sensitive data
// sourceKeypair = null; // Clear reference when done

108/131

return
status: result.status
message: "The trust line has been correctly defined in the USDC token"

catch (error
// Error handling...

Additional Security Improvements:

1. Remove instance variable: Delete private sourceKeypair: StellarSDK.Keypair; from
the class

2. Minimize scope: Use local variables for all cryptographic material

3. Clear sensitive data: Explicitly null sensitive variables when operations complete

4. Audit all services: Review other services for similar private key storage patterns

Status

This finding has been addressed in commit ID 939242c .

109/131

[TS20] Inefficient database querying

Severity: Low Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The codebase uses inefficient database queries and filters manually after fetching multiple or all
documents of a collection. For example, the following code from
src/notifications/notifications.service.ts:57 applies a Firestore query and then performs
additional manual filtering afterwards.

const snapshot = await firestore
.collection("escrows")
.where("disputeFlag", "==", true)
.get();
const HIGH_VALUE_THRESHOLD = 500; // ! ask: how many USDC?
for (const doc of snapshot.docs) {
const escrow = doc.data() as SingleReleaseEscrow;
if (escrow.amount > HIGH_VALUE_THRESHOLD) {
// ! ask: amount or balance?
await createNotification(this.firebaseService, {
contractId: escrow.contractld,
type: "high_value_dispute",
title: "High Value Escrow in Dispute",
message: "Escrow ${escrow.title} with value ${escrow.amount} is in dispu
entities: |
escrow.roles.approver,
escrow.roles.serviceProvider,
escrow.roles.platformAddress,
escrow.roles.releaseSigner,
escrow.roles.disputeResolver,
escrow.roles.receiver,

Recommendation

1107131

We recommend to adjust all queries to include all relevant filters beforehand, as Firestore supports
expressive queries.

Status

This finding has been addressed in commit 5007e8d

111/131

[TS21] Notifications are created every hour
once they start getting generated

Severity: Low Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

Cron jobs:

The backend uses the @cron annotations from @nestjs/common to create functions that are run
periodically to create notifications for users. These functions check for criteria such as smart
escrow and milestone staleness to remind the users for pending work items.

For example, the function
src/notifications/notifications.service.ts:17:checkPendingEscrows creates notifications
for smart escrows that have unapproved milestones and are older than a fixed offset (for instance,
7 days). This check is executed every hour. By design, this function will continuously generate
notifications until the criteria are not met anymore, thereby generating the same notifications every
hour, unnecessarily filling the notification inbox and database with data.

This issue also applies to the other cron jobs declared in

src/notifications/notifications.service.ts .

Notification endpoints:

The backend endpoints notifications/test/* allow for triggering the notification checks
manually for all users. This allows for malicious API users (without any credentials) to spam the
endpoint with these notification requests. This will cause the backend to possibly generate multiple
notifications per request that are all stored in the database. These endpoints are defined in the file

src/notifications/notifications.controller.ts .

Recommendation

Cron jobs:
Update a timestamp per naotification type that is used to prevent the same notifications from being
generated more than once in a given period of time.

Notification endpoints:
Remove the notification endpoints.

112/131

Status

This finding has been addressed in commit ID 0652a79

113/131

[TS22] No notifications are being created for
multi-release escrows

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The methods in src/notifications/notifications.service.ts that generate user notifications
only consider single release escrows instead of supporting both single-release and multi-release
€SCrows:

e checkHighValueDisputes
e checkInactiveEscrows
e checkPendingEscrows

e checkCompletedMilestones
Recommendation
Update these methods to also generate notifications for multi-release escrows for consistent

behaviour.

Status

This finding has been addressed in commit ID ee38c9e

114/131

[TS23] Use of floating-point number type for
critical values

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The codebase makes extensive use of the JavaScript primitive type number , which is a double-
precision 64-bit floating point number. Due to the floating-point implementation, the number type is
prone to rounding errors by nature. Simply parsing a numerical string to a number may round the
number upwards or downwards, typically for very large or very small numbers.

Due to this, other types and classes should be used to handle critical numbers. For example, the
JavaScript primitive type bigint , typically called a Bigint value/object, can be used to precisely
store integers. As JavaScript offers no equivalent for non-integer arbitrary-precision numbers, a
library must be used that implements similar functionality for such cases.

Dangerous usage of number
The codebase dangerously uses number to store and calculate critical values such as e.q.:

e src/stellar-contract/escrow/Dto/fund-escrow.dto.ts:17 : monetary value amount
e src/utils/parse.utils.ts:21 :currency conversion using imprecise floating-point arithmetic

Recommendation

Review the codebase in regard to usage of number and replace number with a precise equivalent
such as e.g. BigInt . Ensure that all arithmetic operations are precise and round towards the
correct direction in case rounding is unavoidable. Ensure that serialization and deserialization of
numerical values incurs no critical loss of precision.

Status

This finding has been addressed in commit ID eesg2a6e .

115/131

[TS24] API key does not meet security
standards

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The backend uses JWT for user session authorization and additionally supports API keys.
However, the API keys are currently not used anywhere in the codebase for actual authorization,
which makes them serve no purpose. All endpoints that require authorization currently make use of
the JWT token.

The API key can be added to a user account by using the user/:id/api-key endpoint and
supplying the key in the body. Currently, this endpoint is not protected with proper authentication
and authorization, as described in [TS03] Missing Authentication Guards on Critical Endpoints.
There also exist other endpoints that similarly allow for adding API keys. Removal of API keys is
supposed to happen by supplying an empty array, as described in the comment at

src/repositories/user.repository.ts:140 .

The API keys are saved verbatim in the database. This means that API keys can be retrieved in
plain text if an attacker gains read access to the database.

There is no format enforced that the APl keys must comply with, other than sometimes enforcing
them to be strings. The endpoint auth/request-api-key overrides all API keys of the given user
with a single API key that is identical to the JWT token used for user session authorization. This
endpoint is also not protected, currently allowing anyone to override the configured API keys.
Additionally, this unsecured endpoint returns the user data including the generated API key.

Violated security standards for API keys

+ Verbatim storage of API keys in the database:
o API keys are expected to be stored in an in-retrievable way by using state-of-the-art
cryptographic methods

¢ Using the user authorization session JWT as an APl key
o While JWT could be used as an API key, it is critical that user sessions and API keys do
not share the same credentials

116/131

o API keys are never invalidated after a specified amount of time
* API keys should be configurable to be invalid after a specified amount of time or at a given
date and time

e The user is allowed to specify the API key themselves
« Usually the backend generates an API key for the user for maximum security guarantees
of the given API key

* No fixed prefix enforced on the API key:
* Using a fixed prefix that is shared by all API keys allows for detecting leaked API keys on
the internet

Recommendation

Re-implement the APl key mechanisms entirely and follow state-of-the-art recommendations for
safe API key handling. Potentially, trusted and verified libraries could be used to ensure that the API
key implementation is actually secure. This is especially critical as these implementations typically
make use of cryptographic concepts and algorithms that are harder to implement securely.

Status
This finding has been addressed in commit IDs 8360e9b, 9ff80a5, 2e8b7cf, d439c66, 12dfbc2

117/131

https://github.com/Trustless-Work/Trustless-Backend/commit/8360e9b
https://github.com/Trustless-Work/Trustless-Backend/commit/9ff80a5
https://github.com/Trustless-Work/Trustless-Backend/commit/2e8b7cf
https://github.com/Trustless-Work/Trustless-Backend/commit/d439c66
https://github.com/Trustless-Work/Trustless-Backend/commit/12dfbc2

[TS25] Not using synced blockchain state In
database

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The backend synchronizes the blockchain state in a database. This allows for fast querying of
blockchain data without involving the Stellar API.

In src/stellar-contract/escrow/shared/shared-escrow.service.ts:246 , the function
simulateReadonlycall is used that uses the Stellar API to simulate a transaction, see
src/stellar-contract/shared/stellar-transaction-builder.service.ts:255 . This data is

used in src/stellar-contract/escrow/shared/shared-escrow.service.ts:56 to query the

attribute decimals of a smart escrow from blockchain state.

This can be optimized by using the synchronized state in the database instead. Additionally, such
an approach does not prevent race conditions or front-running attacks. Instead, the backend must
rely on the smart escrow smart contract to prevent any front-running attacks and submit data in a
transactional ordering. Therefore, the database state can be used here.

Recommendation

Replace all non-critical occurrences of querying blockchain state with database queries to
synchronized blockchain state in the database. It must be ensured that the database state is
synchronized properly with the blockchain.

Status

This finding has been addressed in commit ID 4298787.

118/131

https://github.com/Trustless-Work/Trustless-Backend/commit/4298787

[TS26] API provided values are silently
overridden with default values

Severity: Informative Recommended Action: Fix Code Addressed by client

Description

The backend defines DTO (Data Transfer Objects) that declare the fields and types that can be
sent to individual endpoints, typically encoded as JSON in the HTTP body. These values provided
by the client are usually transformed and validated in the backend.

Some DTOs fields are silently overridden with default values, e.g.:

e src/utils/parse.utils.ts:65

e src/utils/parse.utils.ts:115
Recommendation
Change the endpoints and DTOs to either drop fields that are not required by the backend, or

alternatively make use of the currently unused fields and values in the DTOs.

Status
This finding has been addressed in commit ID 0843d1b.

119/131

https://github.com/Trustless-Work/Trustless-Backend/commit/0843d1b

[TS27] Login authentication procedure does
not authenticate user

Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The backend does not have an endpoint dedicated for user logins that authenticates the respective
user and returns a session JWT. Instead, the backend provides the endpoints
/auth/request-api-key , /user/:id ,and /user/create .

A user can be created with the endpoint /user/create without any authentication. Subsequently,
a JWT token can be generated and retrieved with the endpoint /auth/request-api-key without
any authentication (and also no JWT is required to access this endpoint). Subsequently, this JWT
can be retrieved with the endpoint /user/:id without authentication. These critical endpoints are
missing authorization, as described in [TS03] Missing Authentication Guards on Critical Endpoints.

It should be noted that the backend generated API keys are valid JWT tokens that can be used to
successfully authenticate with the backend, as described in [TS24] API key does not meet security
standards.

Generally, anybody can log in, generate, and retrieve API keys that are valid JWT tokens for
authorization, without providing any authentication. Only the respective public wallet address must
be provided to the API.

// src/auth/auth.controller.ts:11

@Post("request-api-key")

async login(@Body() loginUserDto: LoginUserDto) {
return await this.authService.login(loginUserDto);

}

// src/auth/auth.service.ts:59
async login(loginUserDto: LoginUserDto) {
const { wallet } = loginUserDto;

if (lwallet) {

throw new UnauthorizedException("Wallet is required");

}

1207131

const firestore = this.firebaseService.getFirestore
const usersCollection = firestore.collection("users"
const user = await usersCollection.doc(wallet).get

if (user.data() === undefined
throw new UnauthorizedException("User are not registered"

const token = this.getJwtToken({ wallet: user.data().address

awailt usersCollection.doc(wallet).update
apiKey: FieldValue.arrayUnion(token

// eslint-disable-next-line @typescript-eslint/no-unused-vars
const { id, ...userData } = user.data
return userData

Recommendation

A proper authentication procedure must be implemented and mandatory for all endpoints that
require authentication such as login and register endpoints.

As users login with their respective wallet, they must authenticate that they are the respective
owner of the wallet. This can be properly implemented by following the SEP-10 standard
(https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0010.md), as described in the
Stellar documentation (https://developers.stellar.org/docs/build/apps/wallet/sepl10).

Additionally, the generated JWT tokens should not be saved in the database. Instead, whenever
the user loses the JWT or the JWT becomes invalid, the user is expected to re-authenticate to get a
new JWT.

Status

This finding has been addressed in commit ID 8360e9b, 2e8b7cf, 4f7b37e.

1217131

https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0010.md
https://developers.stellar.org/docs/build/apps/wallet/sep10
https://github.com/Trustless-Work/Trustless-Backend/commit/8360e9b
https://github.com/Trustless-Work/Trustless-Backend/commit/2e8b7cf
https://github.com/Trustless-Work/Trustless-Backend/commit/4f7b37e

[TS28] The backend relies on data in

pendingWriteQueue and getTransaction
Instead of events and blockchain storage

Severity: High Difficulty: Medium Recommended Action: Fix Design Not addressed by client

Description

The backend provides an API that can be used to fetch smart escrow data from a database instead
of the blockchain. The backend ensures that the database is always in sync with the blockchain
state. This is currently implemented by requiring all smart escrow creation and mutation
transactions to be created by the backend.

The backend stores the data related to the respective transaction in a queue and sends the
transaction to the user's client. After the user signed the transaction, the user can either send the
signed transaction to the backend, where it is submitted to the blockchain and included in the
database, or submit the transaction themselves and only send the respective transaction hash to
the backend, where the respective related data is taken from the queue and synchronized with the
database. In case the backend receives the transaction hash from the client, it validates whether
the transaction was actually submitted to and processed by the blockchain, though only for smart
escrow deployment transactions as already described in [TS29] Missing validation whether user-
submitted transactions were actually submitted to and processed by the blockchain.

When a user does not deploy the smart escrow with the backend, then the smart escrow is not
properly synchronized to the database and cannot be later added to the backend database, thereby
denying the user the use of the backend API, even though the smart escrow would pay fees to
Trustless Work for the backend API infrastructure.

Additionally, any smart escrow transaction that was not generated by the backend will not be
captured, leading to a state where the backend database is not properly in sync with the
blockchain.

The backend utilizes the getTransaction API endpoint of the Stellar blockchain to confirm the
validity of transactions and also to get the contract id from deployment transactions. The Stellar
getTransaction™ endpoint only stores transactions for a restricted period of time, the default being
24 hours, see https://developers.stellar.org/docs/data/apis/rpc/api-

122/131

https://developers.stellar.org/docs/data/apis/rpc/api-reference/methods/getTransaction
https://developers.stellar.org/docs/data/apis/rpc/api-reference/methods/getTransaction

reference/methods/getTransaction. This puts the backend at risk of missing transactions in case of
downtime or similar.

Recommendation

We recommend to replace the pendingwWriteQueue design choice with a procedure that queries
storage state from smart escrows via the Stellar API and syncs the data with the database. This
procedure could be run for smart escrows determined via emitted Soroban events that the backend
could periodically query for from the Stellar API. Additionally, an API endpoint could be provided to
update the state on a specific given smart escrow, in case the events were missed by the backend
due to, e.g., downtime. This is because events are similary to transactions only stored for a
restricted amount of time in Stellar API nodes.

This would deliberately also allow the backend to process smart escrows that were not deployed by
the backend. Therefore the backend must check that the wasm hash of the smart escrow is valid.
Additionally, we recommend to validate the smart escrow storage state for valid storage values.
This is because we assume that smart escrows with invalid storage values (bypassing initialization
validation) could potentially be deployed by exploiting Soroban's smart escrow upgrade
functionality.

Status

This finding will be fixed in the future version of the protocol which will implement a dedicated
blockchain indexer.

123/131

https://developers.stellar.org/docs/data/apis/rpc/api-reference/methods/getTransaction
https://developers.stellar.org/docs/data/apis/rpc/api-reference/methods/getTransaction

[TS29] Missing validation whether user-
submitted transactions were actually
submitted to and processed by the
blockchain

Severity: High Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The function updateFromTxHash at src/indexer/indexer.service.ts:23 is used to process
pending transactions stored in the pendingwriteQueue that previously were not yet submitted to
and processed by the blockchain. This function is therefore called after either the backend submits
a transaction or after a user submits a transaction and notifies the backend through its
/indexer/update-from-txhash endpoint, providing the transaction hash.

In case the transaction deployed a smart escrow, i.e. pending.type === "SAVE_ESCROW" , the
function updateFromTxHash uses getTransaction to retrieve the smart contract address. This is
expected to fail if the transaction has not yet been processed by the blockchain, though there is no
dedicated check that validates this directly.

In the other case, where the transaction is different from deployment, the transaction, as long as it
is available in the pendingwriteQueue , is processed and the mirrored blockchain state in the
database updated. There is no validation that checks whether the transaction has been processed
by the blockchain. This means that users can create transactions (except for deployment) with the
backend and then use the /indexer/update-from-txhash endpointto cause the backend to
process these transactions without the user ever having to submit the transactions to the
blockchain.

Additionally, due to the finally in updateFromTxHash that removes the respective transaction
from the queue, the transaction is always removed from the queue, regardless of whether the
transaction was processed by the backend. E.qg., it is expected that this might happen when a
deployment transaction is processed by updateFromTxHash without the blockchain yet having
processed the transaction.

Recommendation

1247131

Add proper validation that the transaction that is being processed in updateFromTxHash was
actually properly processed by the blockchain with getTransaction . Additionally, in case the
blockchain did not properly or successfully process the transaction, keep the element in the queue.
Of course, as previously discussed in [TS01] In-Memory Queue Storage Causing Data Loss and
Scaling Issues, there needs to be a mechanism in place that removes elements from the queue
after a specified period of time has passed.

Status

This finding has been addressed in commit ID 36ece55.

125/131

https://github.com/Trustless-Work/Trustless-Backend/commit/36ece55

[TS30] Recommendation: use self-hosted
Stellar nodes as the Stellar APl endpoint

Severity: Informative Not addressed by client

Description

The backend requires a Stellar API endpoint to properly function. In case this API endpoint is
hosted by a third-party, this third-party could feed wrong and potentially malicious data to the
backend.

Recommendation

To ensure that data returned by the Stellar APl is valid, Stellar nodes could instead be self-hosted.
These nodes are then expected to always return valid data, as long as they are hosted securely,
properly maintained, and kept up to date.

Status

This recommendation was already being considered by the client, and will be fixed in the future
implementation of the project outside of the scope of this audit.

126/131

[TS31] set-trustline endpoint uses a
private key as an argument

Severity: High Difficulty: High Recommended Action: Fix Code Addressed by client

Description

The endpoint /helper/set-trustline can be used to set a trustline on a Stellar wallet. To do so,
this endpoint takes as argument the private and public keypair of the user. A transaction is prepared
that enables the trustline for the user that is subsequently signed on the backend with the provided
private key and submitted to the blockchain.

This is inherently dangerous for end-users, as they are not supposed to share their private key with
other third-parties. This pattern also diverges from the rest of the backend codebase, where an
unsigned transaction is prepared on the backend and then sent to the users client. The user can
then decide on their client whether to sign the transaction after reviewing it.

Recommendation

We recommend to refactor this endpoint to send an unsigned transaction to the users client, similar
to how the other endpoints in the backend operate. There should be no endpoint in the backend
that accepts a users private key as an argument.

Status

This finding has been addressed in commit ID 939242c.

127/131

https://github.com/Trustless-Work/Trustless-Backend/commit/939242c

[TS32] Issued JWT tokens never expire

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The JWT tokens that are created by the backend never expire. As the users login with their wallet,
it is a possibility that the ownership of wallet might change. Therefore, it would be best-practice to
require users to periodically re-authenticate.

// src/auth/auth.module.ts:13
JwtModule.registerAsync({
imports: [],
inject: [1,
useFactory: () => {
return {
secret: process.env.JWT_SECRET,
signOptions: {},
s
1
B,

Recommendation

Add an expiration date to JWT tokens by including the following option with a proper value:

// src/auth/auth.module.ts:13
JwtModule.registerAsync({
imports: [],
inject: [,
useFactory: () => {
return {
secret: process.env.JWT_SECRET,
signOptions: {
expiresIn: 'x', // update 'x' to a proper value
1
I
1,
D,

128/131

Status

This finding has been addressed in commit ID 8360e9b

129/131

https://github.com/Trustless-Work/Trustless-Backend/commit/8360e9b

[TS33] Potentially never-ending loop querying
the Stellar API

Severity: High Difficulty: High Recommended Action: Fix Code Addressed by client

Description

The function signAndSendTransaction at src/utils/transaction.utils.ts:100 can be used to
sign a transaction in the backend and subsequently submit that transaction to the blockchain. This
function waits until the transaction has been successfully processed by the blockchain.

However, this loop may never terminate in case the blockchain does not process the transaction as
expected. In that case, the backend would continuously send a request to the Stellar API every
1000 milliseconds.

do {
awalt new Promise((resolve) => setTimeout(resolve, 1000));
getResponse = awailt server.getTransaction(response.hash);
} while (getResponse.status === "NOT_FOUND");

Recommendation

Use a timeout or a maximum number of retries before this loop is terminated and an error is
returned.

Status

This finding has been addressed in commit ID 1b3bb0c.

1307131

https://github.com/Trustless-Work/Trustless-Backend/commit/1b3bb0c

Limitations and Recommendations for
Follow-Up Audit

Runtime Verification reviewed and tested the codebase over a five-week period, during which a
substantial number of issues were identified and reported to the client. Many of these findings have
since been addressed; however, several of the implemented fixes involved significant code
changes that could not be exhaustively re-audited within the scope and timeframe of this
engagement.

While Runtime Verification performed targeted spot-checks of select remediations, we did not
conduct a full re-audit of all modified components. Some fixes introduced non-trivial structural
changes whose implications and interactions extend beyond the originally defined audit scope. As a
result, we cannot guarantee that all remediations have been correctly and securely implemented,
nor that new vulnerabilities have not been introduced as a side effect of these changes.

Given the overall volume of code changes and the complexity of the system, we strongly
recommend conducting a comprehensive follow-up audit of the updated codebase before the
project secures significant value in its smart contracts. A focused re-audit should verify both the
correctness of all remediations and the absence of regressions or emergent issues resulting from
refactoring.

This recommendation is made in the interest of transparency and due diligence. The audit team'’s
findings and review were limited to the code and commits available during the original audit
window, and Runtime Verification cannot assume responsibility for subsequent modifications or
unreviewed changes introduced after that period.

131/131

